Neck-pinching of C P 1 -structures in the PSL 2 C -character variety.

IF 0.8 2区 数学 Q2 MATHEMATICS
Journal of Topology Pub Date : 2025-03-01 Epub Date: 2024-12-30 DOI:10.1112/topo.70010
Shinpei Baba
{"title":"<ArticleTitle xmlns:ns0=\"http://www.w3.org/1998/Math/MathML\">Neck-pinching of <ns0:math> <ns0:mrow><ns0:mrow><ns0:mi>C</ns0:mi> <ns0:msup><ns0:mi>P</ns0:mi> <ns0:mn>1</ns0:mn></ns0:msup> </ns0:mrow> </ns0:mrow> </ns0:math> -structures in the <ns0:math> <ns0:mrow> <ns0:mrow><ns0:msub><ns0:mi>PSL</ns0:mi> <ns0:mn>2</ns0:mn></ns0:msub> <ns0:mi>C</ns0:mi></ns0:mrow> </ns0:mrow> </ns0:math> -character variety.","authors":"Shinpei Baba","doi":"10.1112/topo.70010","DOIUrl":null,"url":null,"abstract":"<p><p>We characterize a certain neck-pinching degeneration of (marked) <math> <mrow><mrow><mi>C</mi> <msup><mi>P</mi> <mn>1</mn></msup> </mrow> </mrow> </math> -structures on a closed oriented surface <math><mrow><mi>S</mi></mrow> </math> of genus at least two. In a more general setting, we take a path of <math> <mrow><mrow><mi>C</mi> <msup><mi>P</mi> <mn>1</mn></msup> </mrow> </mrow> </math> -structures <math> <mrow> <mrow><msub><mi>C</mi> <mi>t</mi></msub> <mspace></mspace> <mrow><mo>(</mo> <mi>t</mi> <mo>⩾</mo> <mn>0</mn> <mo>)</mo></mrow> </mrow> </mrow> </math> on <math><mrow><mi>S</mi></mrow> </math> that leaves every compact subset in its deformation space, such that the holonomy of <math> <mrow><msub><mi>C</mi> <mi>t</mi></msub> </mrow> </math> converges in the <math> <mrow> <mrow><msub><mi>PSL</mi> <mn>2</mn></msub> <mi>C</mi></mrow> </mrow> </math> -character variety as <math> <mrow><mrow><mi>t</mi> <mo>→</mo> <mi>∞</mi></mrow> </mrow> </math> . Then, it is well known that the complex structure <math> <mrow><msub><mi>X</mi> <mi>t</mi></msub> </mrow> </math> of <math> <mrow><msub><mi>C</mi> <mi>t</mi></msub> </mrow> </math> also leaves every compact subset in the Teichmüller space of <math><mrow><mi>S</mi></mrow> </math> . In this paper, under an additional assumption that <math> <mrow><msub><mi>X</mi> <mi>t</mi></msub> </mrow> </math> is pinched along a loop <math><mrow><mi>m</mi></mrow> </math> on <math><mrow><mi>S</mi></mrow> </math> , we describe the limit of <math> <mrow><msub><mi>C</mi> <mi>t</mi></msub> </mrow> </math> from different perspectives: namely, in terms of the developing maps, holomorphic quadratic differentials, and pleated surfaces. The holonomy representations of <math> <mrow><mrow><mi>C</mi> <msup><mi>P</mi> <mn>1</mn></msup> </mrow> </mrow> </math> -structures on <math><mrow><mi>S</mi></mrow> </math> are known to be nonelementary (i.e., strongly irreducible and unbounded). We also give a rather exotic example of such a path <math> <mrow><msub><mi>C</mi> <mi>t</mi></msub> </mrow> </math> whose limit holonomy is the trivial representation.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"18 1","pages":"e70010"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685183/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/topo.70010","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We characterize a certain neck-pinching degeneration of (marked) C P 1 -structures on a closed oriented surface S of genus at least two. In a more general setting, we take a path of C P 1 -structures C t ( t 0 ) on S that leaves every compact subset in its deformation space, such that the holonomy of C t converges in the PSL 2 C -character variety as t . Then, it is well known that the complex structure X t of C t also leaves every compact subset in the Teichmüller space of S . In this paper, under an additional assumption that X t is pinched along a loop m on S , we describe the limit of C t from different perspectives: namely, in terms of the developing maps, holomorphic quadratic differentials, and pleated surfaces. The holonomy representations of C P 1 -structures on S are known to be nonelementary (i.e., strongly irreducible and unbounded). We also give a rather exotic example of such a path C t whose limit holonomy is the trivial representation.

PSLⅱC特征变化中c1 -结构的掐颈。
我们描述了在至少2属的闭取向表面S上(标记的)cp1 -结构的某种掐颈退化。在更一般的设置中,我们在S上采取c1 -结构C t (t大于或等于0)的路径,它在其变形空间中留下每个紧致子集,使得C t的完整性在PSL 2c -字符变化中收敛为t→∞。那么,众所周知,C t的复结构X t也会在S的teichmller空间中留下每一个紧子集。在本文中,在附加假设X t沿着S上的环m被压缩的情况下,我们从不同的角度描述了C t的极限:即从发展映射、全纯二次微分和褶曲面的角度。已知S上cp1 -结构的完整表示是非初等的(即强不可约和无界的)。我们也给出了这样一个路径C t的奇特例子,它的极限完整性是平凡表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Topology
Journal of Topology 数学-数学
CiteScore
2.00
自引率
9.10%
发文量
62
审稿时长
>12 weeks
期刊介绍: The Journal of Topology publishes papers of high quality and significance in topology, geometry and adjacent areas of mathematics. Interesting, important and often unexpected links connect topology and geometry with many other parts of mathematics, and the editors welcome submissions on exciting new advances concerning such links, as well as those in the core subject areas of the journal. The Journal of Topology was founded in 2008. It is published quarterly with articles published individually online prior to appearing in a printed issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信