Agnès Beaudry, Michael A. Hill, Tyler Lawson, XiaoLin Danny Shi, Mingcong Zeng
求助PDF
{"title":"实数矩阵范数商的切片谱序列","authors":"Agnès Beaudry, Michael A. Hill, Tyler Lawson, XiaoLin Danny Shi, Mingcong Zeng","doi":"10.1112/topo.70015","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate equivariant quotients of the Real bordism spectrum's multiplicative norm <span></span><math>\n <semantics>\n <mrow>\n <mi>M</mi>\n <msup>\n <mi>U</mi>\n <mrow>\n <mo>(</mo>\n <mspace></mspace>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>C</mi>\n <msup>\n <mn>2</mn>\n <mi>n</mi>\n </msup>\n </msub>\n <mo>)</mo>\n </mrow>\n <mspace></mspace>\n <mo>)</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$MU^{(\\!(C_{2^n})\\!)}$</annotation>\n </semantics></math> by permutation summands. These quotients are of interest because of their close relationship with higher real <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math>-theories. We introduce new techniques for computing the equivariant homotopy groups of such quotients. As a new example, we examine the theories <span></span><math>\n <semantics>\n <mrow>\n <mi>B</mi>\n <msup>\n <mi>P</mi>\n <mrow>\n <mo>(</mo>\n <mspace></mspace>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>C</mi>\n <msup>\n <mn>2</mn>\n <mi>n</mi>\n </msup>\n </msub>\n <mo>)</mo>\n </mrow>\n <mspace></mspace>\n <mo>)</mo>\n </mrow>\n </msup>\n <mrow>\n <mo>⟨</mo>\n <mi>m</mi>\n <mo>,</mo>\n <mi>m</mi>\n <mo>⟩</mo>\n </mrow>\n </mrow>\n <annotation>$BP^{(\\!(C_{2^n})\\!)}\\langle m,m\\rangle$</annotation>\n </semantics></math>. These spectra serve as natural equivariant generalizations of connective integral Morava <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math>-theories. We provide a complete computation of the <span></span><math>\n <semantics>\n <msub>\n <mi>a</mi>\n <mi>σ</mi>\n </msub>\n <annotation>$a_{\\sigma }$</annotation>\n </semantics></math>-localized slice spectral sequence of <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>i</mi>\n <msub>\n <mi>C</mi>\n <msup>\n <mn>2</mn>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </msub>\n <mo>∗</mo>\n </msubsup>\n <mi>B</mi>\n <msup>\n <mi>P</mi>\n <mrow>\n <mo>(</mo>\n <mspace></mspace>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>C</mi>\n <msup>\n <mn>2</mn>\n <mi>n</mi>\n </msup>\n </msub>\n <mo>)</mo>\n </mrow>\n <mspace></mspace>\n <mo>)</mo>\n </mrow>\n </msup>\n <mrow>\n <mo>⟨</mo>\n <mi>m</mi>\n <mo>,</mo>\n <mi>m</mi>\n <mo>⟩</mo>\n </mrow>\n </mrow>\n <annotation>$i^*_{C_{2^{n-1}}}BP^{(\\!(C_{2^n})\\!)}\\langle m,m\\rangle$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mi>σ</mi>\n <annotation>$\\sigma$</annotation>\n </semantics></math> is the real sign representation of <span></span><math>\n <semantics>\n <msub>\n <mi>C</mi>\n <msup>\n <mn>2</mn>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </msub>\n <annotation>$C_{2^{n-1}}$</annotation>\n </semantics></math>. To achieve this computation, we establish a correspondence between this localized slice spectral sequence and the <span></span><math>\n <semantics>\n <mrow>\n <mi>H</mi>\n <msub>\n <mi>F</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>$H\\mathbb {F}_2$</annotation>\n </semantics></math>-based Adams spectral sequence in the category of <span></span><math>\n <semantics>\n <mrow>\n <mi>H</mi>\n <msub>\n <mi>F</mi>\n <mn>2</mn>\n </msub>\n <mo>∧</mo>\n <mi>H</mi>\n <msub>\n <mi>F</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>$H\\mathbb {F}_2 \\wedge H\\mathbb {F}_2$</annotation>\n </semantics></math>-modules. Furthermore, we provide a full computation of the <span></span><math>\n <semantics>\n <msub>\n <mi>a</mi>\n <mi>λ</mi>\n </msub>\n <annotation>$a_{\\lambda }$</annotation>\n </semantics></math>-localized slice spectral sequence of the height-4 theory <span></span><math>\n <semantics>\n <mrow>\n <mi>B</mi>\n <msup>\n <mi>P</mi>\n <mrow>\n <mo>(</mo>\n <mspace></mspace>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>C</mi>\n <mn>4</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <mspace></mspace>\n <mo>)</mo>\n </mrow>\n </msup>\n <mrow>\n <mo>⟨</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mn>2</mn>\n <mo>⟩</mo>\n </mrow>\n </mrow>\n <annotation>$BP^{(\\!(C_{4})\\!)}\\langle 2,2\\rangle$</annotation>\n </semantics></math>. The <span></span><math>\n <semantics>\n <msub>\n <mi>C</mi>\n <mn>4</mn>\n </msub>\n <annotation>$C_4$</annotation>\n </semantics></math>-slice spectral sequence can be entirely recovered from this computation.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"18 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the slice spectral sequence for quotients of norms of Real bordism\",\"authors\":\"Agnès Beaudry, Michael A. Hill, Tyler Lawson, XiaoLin Danny Shi, Mingcong Zeng\",\"doi\":\"10.1112/topo.70015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we investigate equivariant quotients of the Real bordism spectrum's multiplicative norm <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>M</mi>\\n <msup>\\n <mi>U</mi>\\n <mrow>\\n <mo>(</mo>\\n <mspace></mspace>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>C</mi>\\n <msup>\\n <mn>2</mn>\\n <mi>n</mi>\\n </msup>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <mspace></mspace>\\n <mo>)</mo>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$MU^{(\\\\!(C_{2^n})\\\\!)}$</annotation>\\n </semantics></math> by permutation summands. These quotients are of interest because of their close relationship with higher real <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math>-theories. We introduce new techniques for computing the equivariant homotopy groups of such quotients. As a new example, we examine the theories <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>B</mi>\\n <msup>\\n <mi>P</mi>\\n <mrow>\\n <mo>(</mo>\\n <mspace></mspace>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>C</mi>\\n <msup>\\n <mn>2</mn>\\n <mi>n</mi>\\n </msup>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <mspace></mspace>\\n <mo>)</mo>\\n </mrow>\\n </msup>\\n <mrow>\\n <mo>⟨</mo>\\n <mi>m</mi>\\n <mo>,</mo>\\n <mi>m</mi>\\n <mo>⟩</mo>\\n </mrow>\\n </mrow>\\n <annotation>$BP^{(\\\\!(C_{2^n})\\\\!)}\\\\langle m,m\\\\rangle$</annotation>\\n </semantics></math>. These spectra serve as natural equivariant generalizations of connective integral Morava <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math>-theories. We provide a complete computation of the <span></span><math>\\n <semantics>\\n <msub>\\n <mi>a</mi>\\n <mi>σ</mi>\\n </msub>\\n <annotation>$a_{\\\\sigma }$</annotation>\\n </semantics></math>-localized slice spectral sequence of <span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>i</mi>\\n <msub>\\n <mi>C</mi>\\n <msup>\\n <mn>2</mn>\\n <mrow>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </msub>\\n <mo>∗</mo>\\n </msubsup>\\n <mi>B</mi>\\n <msup>\\n <mi>P</mi>\\n <mrow>\\n <mo>(</mo>\\n <mspace></mspace>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>C</mi>\\n <msup>\\n <mn>2</mn>\\n <mi>n</mi>\\n </msup>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <mspace></mspace>\\n <mo>)</mo>\\n </mrow>\\n </msup>\\n <mrow>\\n <mo>⟨</mo>\\n <mi>m</mi>\\n <mo>,</mo>\\n <mi>m</mi>\\n <mo>⟩</mo>\\n </mrow>\\n </mrow>\\n <annotation>$i^*_{C_{2^{n-1}}}BP^{(\\\\!(C_{2^n})\\\\!)}\\\\langle m,m\\\\rangle$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mi>σ</mi>\\n <annotation>$\\\\sigma$</annotation>\\n </semantics></math> is the real sign representation of <span></span><math>\\n <semantics>\\n <msub>\\n <mi>C</mi>\\n <msup>\\n <mn>2</mn>\\n <mrow>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </msub>\\n <annotation>$C_{2^{n-1}}$</annotation>\\n </semantics></math>. To achieve this computation, we establish a correspondence between this localized slice spectral sequence and the <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>H</mi>\\n <msub>\\n <mi>F</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation>$H\\\\mathbb {F}_2$</annotation>\\n </semantics></math>-based Adams spectral sequence in the category of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>H</mi>\\n <msub>\\n <mi>F</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>∧</mo>\\n <mi>H</mi>\\n <msub>\\n <mi>F</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation>$H\\\\mathbb {F}_2 \\\\wedge H\\\\mathbb {F}_2$</annotation>\\n </semantics></math>-modules. Furthermore, we provide a full computation of the <span></span><math>\\n <semantics>\\n <msub>\\n <mi>a</mi>\\n <mi>λ</mi>\\n </msub>\\n <annotation>$a_{\\\\lambda }$</annotation>\\n </semantics></math>-localized slice spectral sequence of the height-4 theory <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>B</mi>\\n <msup>\\n <mi>P</mi>\\n <mrow>\\n <mo>(</mo>\\n <mspace></mspace>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>C</mi>\\n <mn>4</mn>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <mspace></mspace>\\n <mo>)</mo>\\n </mrow>\\n </msup>\\n <mrow>\\n <mo>⟨</mo>\\n <mn>2</mn>\\n <mo>,</mo>\\n <mn>2</mn>\\n <mo>⟩</mo>\\n </mrow>\\n </mrow>\\n <annotation>$BP^{(\\\\!(C_{4})\\\\!)}\\\\langle 2,2\\\\rangle$</annotation>\\n </semantics></math>. The <span></span><math>\\n <semantics>\\n <msub>\\n <mi>C</mi>\\n <mn>4</mn>\\n </msub>\\n <annotation>$C_4$</annotation>\\n </semantics></math>-slice spectral sequence can be entirely recovered from this computation.</p>\",\"PeriodicalId\":56114,\"journal\":{\"name\":\"Journal of Topology\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Topology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.70015\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.70015","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用