Groups with exotic finiteness properties from complex Morse theory

IF 0.8 2区 数学 Q2 MATHEMATICS
Claudio Llosa Isenrich, Pierre Py
{"title":"Groups with exotic finiteness properties from complex Morse theory","authors":"Claudio Llosa Isenrich,&nbsp;Pierre Py","doi":"10.1112/topo.70013","DOIUrl":null,"url":null,"abstract":"<p>Recent constructions have shown that interesting behaviours can be observed in the finiteness properties of Kähler groups and their subgroups. In this work, we push this further and exhibit, for each integer <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>, new hyperbolic groups admitting surjective homomorphisms to <span></span><math>\n <semantics>\n <mi>Z</mi>\n <annotation>${\\mathbb {Z}}$</annotation>\n </semantics></math> and to <span></span><math>\n <semantics>\n <msup>\n <mi>Z</mi>\n <mn>2</mn>\n </msup>\n <annotation>${\\mathbb {Z}}^{2}$</annotation>\n </semantics></math>, whose kernel is of type <span></span><math>\n <semantics>\n <msub>\n <mi>F</mi>\n <mi>k</mi>\n </msub>\n <annotation>$\\mathcal {F}_{k}$</annotation>\n </semantics></math> but not of type <span></span><math>\n <semantics>\n <msub>\n <mi>F</mi>\n <mrow>\n <mi>k</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <annotation>$\\mathcal {F}_{k+1}$</annotation>\n </semantics></math>. By a fibre product construction, we also find examples of non-normal subgroups of Kähler groups with exotic finiteness properties.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"18 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.70013","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.70013","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Recent constructions have shown that interesting behaviours can be observed in the finiteness properties of Kähler groups and their subgroups. In this work, we push this further and exhibit, for each integer k $k$ , new hyperbolic groups admitting surjective homomorphisms to Z ${\mathbb {Z}}$ and to Z 2 ${\mathbb {Z}}^{2}$ , whose kernel is of type F k $\mathcal {F}_{k}$ but not of type F k + 1 $\mathcal {F}_{k+1}$ . By a fibre product construction, we also find examples of non-normal subgroups of Kähler groups with exotic finiteness properties.

Abstract Image

复莫尔斯理论中奇异有限性质群
最近的构造表明,在Kähler群及其子群的有限性质中可以观察到有趣的行为。在这项工作中,我们进一步推广了这一理论,并证明了对于每一个整数k$ k$,承认Z ${\mathbb {Z}}$和z2 ${\mathbb {Z}}^{2}$满同态的新双曲群。其内核类型为F k $\mathcal {F}_{k}$,但类型不为F k+1 $\mathcal {F}_{k+1}$。通过纤维积构造,我们还发现了具有奇异有限性质的Kähler群的非正规子群的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Topology
Journal of Topology 数学-数学
CiteScore
2.00
自引率
9.10%
发文量
62
审稿时长
>12 weeks
期刊介绍: The Journal of Topology publishes papers of high quality and significance in topology, geometry and adjacent areas of mathematics. Interesting, important and often unexpected links connect topology and geometry with many other parts of mathematics, and the editors welcome submissions on exciting new advances concerning such links, as well as those in the core subject areas of the journal. The Journal of Topology was founded in 2008. It is published quarterly with articles published individually online prior to appearing in a printed issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信