Monopoles and Landau–Ginzburg models III: A gluing theorem

IF 0.8 2区 数学 Q2 MATHEMATICS
Donghao Wang
{"title":"Monopoles and Landau–Ginzburg models III: A gluing theorem","authors":"Donghao Wang","doi":"10.1112/topo.12360","DOIUrl":null,"url":null,"abstract":"<p>This is the third paper of this series. In Wang [Monopoles and Landau-Ginzburg models II: Floer homology. arXiv:2005.04333, 2020], we defined the monopole Floer homology for any pair <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>Y</mi>\n <mo>,</mo>\n <mi>ω</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(Y,\\omega)$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mi>Y</mi>\n <annotation>$Y$</annotation>\n </semantics></math> is a compact oriented 3-manifold with toroidal boundary and <span></span><math>\n <semantics>\n <mi>ω</mi>\n <annotation>$\\omega$</annotation>\n </semantics></math> is a suitable closed 2-form viewed as a decoration. In this paper, we establish a gluing theorem for this Floer homology when two such 3-manifolds are glued suitably along their common boundary, assuming that <span></span><math>\n <semantics>\n <mrow>\n <mi>∂</mi>\n <mi>Y</mi>\n </mrow>\n <annotation>$\\partial Y$</annotation>\n </semantics></math> is disconnected, and <span></span><math>\n <semantics>\n <mi>ω</mi>\n <annotation>$\\omega$</annotation>\n </semantics></math> is small and yet non-vanishing on <span></span><math>\n <semantics>\n <mrow>\n <mi>∂</mi>\n <mi>Y</mi>\n </mrow>\n <annotation>$\\partial Y$</annotation>\n </semantics></math>. As applications, we construct a monopole Floer 2-functor and the generalized cobordism maps. Using results of Kronheimer–Mrowka and Ni, it is shown that for any such 3-manifold <span></span><math>\n <semantics>\n <mi>Y</mi>\n <annotation>$Y$</annotation>\n </semantics></math> that is irreducible, this Floer homology detects the Thurston norm on <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>H</mi>\n <mn>2</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>Y</mi>\n <mo>,</mo>\n <mi>∂</mi>\n <mi>Y</mi>\n <mo>;</mo>\n <mi>R</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$H_2(Y,\\partial Y;\\mathbb {R})$</annotation>\n </semantics></math> and the fiberness of <span></span><math>\n <semantics>\n <mi>Y</mi>\n <annotation>$Y$</annotation>\n </semantics></math>. Finally, we show that our construction recovers the monopole link Floer homology for any link inside a closed 3-manifold.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"18 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12360","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This is the third paper of this series. In Wang [Monopoles and Landau-Ginzburg models II: Floer homology. arXiv:2005.04333, 2020], we defined the monopole Floer homology for any pair ( Y , ω ) $(Y,\omega)$ , where Y $Y$ is a compact oriented 3-manifold with toroidal boundary and ω $\omega$ is a suitable closed 2-form viewed as a decoration. In this paper, we establish a gluing theorem for this Floer homology when two such 3-manifolds are glued suitably along their common boundary, assuming that Y $\partial Y$ is disconnected, and ω $\omega$ is small and yet non-vanishing on Y $\partial Y$ . As applications, we construct a monopole Floer 2-functor and the generalized cobordism maps. Using results of Kronheimer–Mrowka and Ni, it is shown that for any such 3-manifold Y $Y$ that is irreducible, this Floer homology detects the Thurston norm on H 2 ( Y , Y ; R ) $H_2(Y,\partial Y;\mathbb {R})$ and the fiberness of Y $Y$ . Finally, we show that our construction recovers the monopole link Floer homology for any link inside a closed 3-manifold.

单极子和朗道-金兹堡模型III:一个胶合定理
这是本系列的第三篇论文。Wang[单极子和Landau-Ginzburg模型]中的花同源性。[j],我们定义了任意对(Y, ω) $(Y,\omega)$的单极子Floer同源性。其中Y $Y$是紧致定向的具有环面边界的3流形,ω $\omega$是作为装饰的合适的封闭2形。在本文中,当两个这样的3-流形沿着它们的公共边界适当地粘接时,我们建立了这个Floer同调的粘接定理,假设∂Y $\partial Y$是不连通的,ω $\omega$很小,但在∂Y $\partial Y$上不会消失。作为应用,我们构造了一个单极花2函子和广义协同映射。利用Kronheimer-Mrowka和Ni的结果,证明了对于任何这样不可约的3流形Y $Y$,该flower同源性检测h2 (Y)上的Thurston范数,∂y;R) $H_2(Y,\partial Y;\mathbb {R})$和Y的纤维度$Y$。最后,我们证明了我们的构造恢复了封闭3流形内任意连杆的单极连杆的Floer同调性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Topology
Journal of Topology 数学-数学
CiteScore
2.00
自引率
9.10%
发文量
62
审稿时长
>12 weeks
期刊介绍: The Journal of Topology publishes papers of high quality and significance in topology, geometry and adjacent areas of mathematics. Interesting, important and often unexpected links connect topology and geometry with many other parts of mathematics, and the editors welcome submissions on exciting new advances concerning such links, as well as those in the core subject areas of the journal. The Journal of Topology was founded in 2008. It is published quarterly with articles published individually online prior to appearing in a printed issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信