{"title":"Coarse cubical rigidity","authors":"Elia Fioravanti, Ivan Levcovitz, Michah Sageev","doi":"10.1112/topo.12353","DOIUrl":"https://doi.org/10.1112/topo.12353","url":null,"abstract":"<p>We show that for many right-angled Artin and Coxeter groups, all cocompact cubulations coarsely look the same: They induce the same coarse median structure on the group. These are the first examples of non-hyperbolic groups with this property. For all graph products of finite groups and for Coxeter groups with no irreducible affine parabolic subgroups of rank <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>⩾</mo>\u0000 <mn>3</mn>\u0000 </mrow>\u0000 <annotation>$geqslant 3$</annotation>\u0000 </semantics></math>, we show that all automorphisms preserve the coarse median structure induced, respectively, by the Davis complex and the Niblo–Reeves cubulation. As a consequence, automorphisms of these groups have nice fixed subgroups and satisfy Nielsen realisation.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 3","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12353","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141967142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Degenerations of \u0000 \u0000 k\u0000 $k$\u0000 -positive surface group representations","authors":"Jonas Beyrer, Beatrice Pozzetti","doi":"10.1112/topo.12352","DOIUrl":"https://doi.org/10.1112/topo.12352","url":null,"abstract":"<p>We introduce <span></span><math>\u0000 <semantics>\u0000 <mi>k</mi>\u0000 <annotation>$k$</annotation>\u0000 </semantics></math>-<i>positive representations</i>, a large class of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>{</mo>\u0000 <mn>1</mn>\u0000 <mo>,</mo>\u0000 <mtext>…</mtext>\u0000 <mo>,</mo>\u0000 <mi>k</mi>\u0000 <mo>}</mo>\u0000 </mrow>\u0000 <annotation>$lbrace 1,ldots ,krbrace$</annotation>\u0000 </semantics></math>-Anosov surface group representations into <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>PGL</mi>\u0000 <mo>(</mo>\u0000 <mi>E</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$mathsf {PGL}(E)$</annotation>\u0000 </semantics></math> that share many features with Hitchin representations, and we study their degenerations: unless they are Hitchin, they can be deformed to non-discrete representations, but any limit is at least <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>k</mi>\u0000 <mo>−</mo>\u0000 <mn>3</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(k-3)$</annotation>\u0000 </semantics></math>-positive and irreducible limits are <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>k</mi>\u0000 <mo>−</mo>\u0000 <mn>1</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(k-1)$</annotation>\u0000 </semantics></math>-positive. A major ingredient, of independent interest, is a general limit theorem for positively ratioed representations.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 3","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141967138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}