Journal of Topology最新文献

筛选
英文 中文
Convex co-compact representations of 3-manifold groups 3 个曲面群的凸共容表征
IF 1.1 2区 数学
Journal of Topology Pub Date : 2024-05-01 DOI: 10.1112/topo.12332
Mitul Islam, Andrew Zimmer
{"title":"Convex co-compact representations of 3-manifold groups","authors":"Mitul Islam,&nbsp;Andrew Zimmer","doi":"10.1112/topo.12332","DOIUrl":"https://doi.org/10.1112/topo.12332","url":null,"abstract":"<p>A representation of a finitely generated group into the projective general linear group is called convex co-compact if it has finite kernel and its image acts convex co-compactly on a properly convex domain in real projective space. We prove that the fundamental group of a closed irreducible orientable 3-manifold can admit such a representation only when the manifold is geometric (with Euclidean, Hyperbolic or Euclidean <span></span><math>\u0000 <semantics>\u0000 <mo>×</mo>\u0000 <annotation>$times$</annotation>\u0000 </semantics></math> Hyperbolic geometry) or when every component in the geometric decomposition is hyperbolic. In each case, we describe the structure of such examples.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12332","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140818858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Koszul self-duality of manifolds 流形的科斯祖尔自对偶性
IF 1.1 2区 数学
Journal of Topology Pub Date : 2024-04-29 DOI: 10.1112/topo.12334
Connor Malin
{"title":"Koszul self-duality of manifolds","authors":"Connor Malin","doi":"10.1112/topo.12334","DOIUrl":"https://doi.org/10.1112/topo.12334","url":null,"abstract":"<p>We show that Koszul duality for operads in <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>Top</mi>\u0000 <mo>,</mo>\u0000 <mo>×</mo>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(mathrm{Top},times)$</annotation>\u0000 </semantics></math> can be expressed via generalized Thom complexes. As an application, we prove the Koszul self-duality of the right module <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>E</mi>\u0000 <mi>M</mi>\u0000 </msub>\u0000 <annotation>$E_M$</annotation>\u0000 </semantics></math> associated to a framed manifold <span></span><math>\u0000 <semantics>\u0000 <mi>M</mi>\u0000 <annotation>$M$</annotation>\u0000 </semantics></math>. We discuss implications for factorization homology, embedding calculus, and confirm an old conjecture of Ching on the relation of Goodwillie calculus to manifold calculus.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140808033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Brane structures in microlocal sheaf theory 微局域剪切理论中的线性结构
IF 1.1 2区 数学
Journal of Topology Pub Date : 2024-03-14 DOI: 10.1112/topo.12325
Xin Jin, David Treumann
{"title":"Brane structures in microlocal sheaf theory","authors":"Xin Jin,&nbsp;David Treumann","doi":"10.1112/topo.12325","DOIUrl":"10.1112/topo.12325","url":null,"abstract":"<p>Let <math>\u0000 <semantics>\u0000 <mi>L</mi>\u0000 <annotation>$L$</annotation>\u0000 </semantics></math> be an exact Lagrangian submanifold of a cotangent bundle <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>T</mi>\u0000 <mo>∗</mo>\u0000 </msup>\u0000 <mi>M</mi>\u0000 </mrow>\u0000 <annotation>$T^* M$</annotation>\u0000 </semantics></math>, asymptotic to a Legendrian submanifold <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Λ</mi>\u0000 <mo>⊂</mo>\u0000 <msup>\u0000 <mi>T</mi>\u0000 <mi>∞</mi>\u0000 </msup>\u0000 <mi>M</mi>\u0000 </mrow>\u0000 <annotation>$Lambda subset T^{infty } M$</annotation>\u0000 </semantics></math>. We study a locally constant sheaf of <math>\u0000 <semantics>\u0000 <mi>∞</mi>\u0000 <annotation>$infty$</annotation>\u0000 </semantics></math>-categories on <math>\u0000 <semantics>\u0000 <mi>L</mi>\u0000 <annotation>$L$</annotation>\u0000 </semantics></math>, called the sheaf of brane structures or <math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>Brane</mi>\u0000 <mi>L</mi>\u0000 </msub>\u0000 <annotation>$mathrm{Brane}_L$</annotation>\u0000 </semantics></math>. Its fiber is the <math>\u0000 <semantics>\u0000 <mi>∞</mi>\u0000 <annotation>$infty$</annotation>\u0000 </semantics></math>-category of spectra, and we construct a Hamiltonian invariant, fully faithful functor from <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Γ</mi>\u0000 <mo>(</mo>\u0000 <mi>L</mi>\u0000 <mo>,</mo>\u0000 <msub>\u0000 <mi>Brane</mi>\u0000 <mi>L</mi>\u0000 </msub>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$Gamma (L,mathrm{Brane}_L)$</annotation>\u0000 </semantics></math> to the <math>\u0000 <semantics>\u0000 <mi>∞</mi>\u0000 <annotation>$infty$</annotation>\u0000 </semantics></math>-category of sheaves of spectra on <math>\u0000 <semantics>\u0000 <mi>M</mi>\u0000 <annotation>$M$</annotation>\u0000 </semantics></math> with singular support in <math>\u0000 <semantics>\u0000 <mi>Λ</mi>\u0000 <annotation>$Lambda$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12325","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140124243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Equivariant Lagrangian Floer homology via cotangent bundles of E G N $EG_N$ 通过 E G N $EG_N$ 共切束的等变拉格朗日浮子同源性
IF 1.1 2区 数学
Journal of Topology Pub Date : 2024-03-12 DOI: 10.1112/topo.12328
Guillem Cazassus
{"title":"Equivariant Lagrangian Floer homology via cotangent bundles of \u0000 \u0000 \u0000 E\u0000 \u0000 G\u0000 N\u0000 \u0000 \u0000 $EG_N$","authors":"Guillem Cazassus","doi":"10.1112/topo.12328","DOIUrl":"https://doi.org/10.1112/topo.12328","url":null,"abstract":"<p>We provide a construction of equivariant Lagrangian Floer homology <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>H</mi>\u0000 <msub>\u0000 <mi>F</mi>\u0000 <mi>G</mi>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msub>\u0000 <mi>L</mi>\u0000 <mn>0</mn>\u0000 </msub>\u0000 <mo>,</mo>\u0000 <msub>\u0000 <mi>L</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$HF_G(L_0, L_1)$</annotation>\u0000 </semantics></math>, for a compact Lie group <math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math> acting on a symplectic manifold <math>\u0000 <semantics>\u0000 <mi>M</mi>\u0000 <annotation>$M$</annotation>\u0000 </semantics></math> in a Hamiltonian fashion, and a pair of <math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math>-Lagrangian submanifolds <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>L</mi>\u0000 <mn>0</mn>\u0000 </msub>\u0000 <mo>,</mo>\u0000 <msub>\u0000 <mi>L</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <mo>⊂</mo>\u0000 <mi>M</mi>\u0000 </mrow>\u0000 <annotation>$L_0, L_1 subset M$</annotation>\u0000 </semantics></math>. We do so by using symplectic homotopy quotients involving cotangent bundles of an approximation of <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>E</mi>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation>$EG$</annotation>\u0000 </semantics></math>. Our construction relies on Wehrheim and Woodward's theory of quilts, and the telescope construction. We show that these groups are independent of the auxiliary choices involved in their construction, and are <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>H</mi>\u0000 <mo>∗</mo>\u0000 </msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>B</mi>\u0000 <mi>G</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$H^*(BG)$</annotation>\u0000 </semantics></math>-bimodules. In the case w","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12328","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140114186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An h $h$ -principle for embeddings transverse to a contact structure 接触结构横向嵌入的 h $h$ 原则
IF 1.1 2区 数学
Journal of Topology Pub Date : 2024-03-11 DOI: 10.1112/topo.12326
Robert Cardona, Francisco Presas
{"title":"An \u0000 \u0000 h\u0000 $h$\u0000 -principle for embeddings transverse to a contact structure","authors":"Robert Cardona,&nbsp;Francisco Presas","doi":"10.1112/topo.12326","DOIUrl":"https://doi.org/10.1112/topo.12326","url":null,"abstract":"<p>Given a class of embeddings into a contact or a symplectic manifold, we give a sufficient condition, that we call isocontact or isosymplectic realization, for this class to satisfy a general <math>\u0000 <semantics>\u0000 <mi>h</mi>\u0000 <annotation>$h$</annotation>\u0000 </semantics></math>-principle. The flexibility follows from the <math>\u0000 <semantics>\u0000 <mi>h</mi>\u0000 <annotation>$h$</annotation>\u0000 </semantics></math>-principles for isocontact and isosymplectic embeddings, it provides a framework for classical results, and we give two new applications. Our main result is that embeddings transverse to a contact structure satisfy a full <math>\u0000 <semantics>\u0000 <mi>h</mi>\u0000 <annotation>$h$</annotation>\u0000 </semantics></math>-principle in two cases: if the complement of the embedding is overtwisted, or when the intersection of the image of the formal derivative with the contact structure is strictly contained in a proper symplectic subbundle. We illustrate the general framework on symplectic manifolds by studying the universality of Hamiltonian dynamics on regular level sets via a class of embeddings.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140104530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On fillings of contact links of quotient singularities 论商数奇点接触链路的填充
IF 1.1 2区 数学
Journal of Topology Pub Date : 2024-03-09 DOI: 10.1112/topo.12329
Zhengyi Zhou
{"title":"On fillings of contact links of quotient singularities","authors":"Zhengyi Zhou","doi":"10.1112/topo.12329","DOIUrl":"https://doi.org/10.1112/topo.12329","url":null,"abstract":"<p>We study several aspects of fillings for links of general isolated quotient singularities using Floer theory, including co-fillings, Weinstein fillings, strong fillings, exact fillings and exact orbifold fillings, focusing on the non-existence of exact fillings of contact links of isolated terminal quotient singularities. We provide an extensive list of isolated terminal quotient singularities whose contact links are not exactly fillable, including <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>C</mi>\u0000 <mi>n</mi>\u0000 </msup>\u0000 <mo>/</mo>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>Z</mi>\u0000 <mo>/</mo>\u0000 <mn>2</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>${mathbb {C}}^n/({mathbb {Z}}/2)$</annotation>\u0000 </semantics></math> for <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>⩾</mo>\u0000 <mn>3</mn>\u0000 </mrow>\u0000 <annotation>$ngeqslant 3$</annotation>\u0000 </semantics></math>, which settles a conjecture of Eliashberg, quotient singularities from general cyclic group actions and finite subgroups of <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>S</mi>\u0000 <mi>U</mi>\u0000 <mo>(</mo>\u0000 <mn>2</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$SU(2)$</annotation>\u0000 </semantics></math>, and all terminal quotient singularities in complex dimension 3. We also obtain uniqueness of the <i>orbifold</i> diffeomorphism type of <i>exact orbifold fillings</i> of contact links of some isolated terminal quotient singularities.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140069661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A characterization of heaviness in terms of relative symplectic cohomology 用相对交映同调表征重度
IF 1.1 2区 数学
Journal of Topology Pub Date : 2024-03-09 DOI: 10.1112/topo.12327
Cheuk Yu Mak, Yuhan Sun, Umut Varolgunes
{"title":"A characterization of heaviness in terms of relative symplectic cohomology","authors":"Cheuk Yu Mak,&nbsp;Yuhan Sun,&nbsp;Umut Varolgunes","doi":"10.1112/topo.12327","DOIUrl":"https://doi.org/10.1112/topo.12327","url":null,"abstract":"<p>For a compact subset <math>\u0000 <semantics>\u0000 <mi>K</mi>\u0000 <annotation>$K$</annotation>\u0000 </semantics></math> of a closed symplectic manifold <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>M</mi>\u0000 <mo>,</mo>\u0000 <mi>ω</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(M, omega)$</annotation>\u0000 </semantics></math>, we prove that <math>\u0000 <semantics>\u0000 <mi>K</mi>\u0000 <annotation>$K$</annotation>\u0000 </semantics></math> is heavy if and only if its relative symplectic cohomology over the Novikov field is nonzero. As an application, we show that if two compact sets are not heavy and Poisson commuting, then their union is also not heavy. A discussion on superheaviness together with some partial results is also included.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12327","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140069758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some rational homology computations for diffeomorphisms of odd-dimensional manifolds 奇维流形差分同调的一些理性同调计算
IF 1.1 2区 数学
Journal of Topology Pub Date : 2024-01-31 DOI: 10.1112/topo.12324
Johannes Ebert, Jens Reinhold
{"title":"Some rational homology computations for diffeomorphisms of odd-dimensional manifolds","authors":"Johannes Ebert,&nbsp;Jens Reinhold","doi":"10.1112/topo.12324","DOIUrl":"https://doi.org/10.1112/topo.12324","url":null,"abstract":"<p>We calculate the rational cohomology of the classifying space of the diffeomorphism group of the manifolds <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msubsup>\u0000 <mi>U</mi>\u0000 <mrow>\u0000 <mi>g</mi>\u0000 <mo>,</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 <mi>n</mi>\u0000 </msubsup>\u0000 <mo>:</mo>\u0000 <mo>=</mo>\u0000 <msup>\u0000 <mo>#</mo>\u0000 <mi>g</mi>\u0000 </msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msup>\u0000 <mi>S</mi>\u0000 <mi>n</mi>\u0000 </msup>\u0000 <mo>×</mo>\u0000 <msup>\u0000 <mi>S</mi>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>+</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 </msup>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo>∖</mo>\u0000 <mi>int</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msup>\u0000 <mi>D</mi>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 <mi>n</mi>\u0000 <mo>+</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 </msup>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$U_{g,1}^n:= #^g(S^n times S^{n+1})setminus mathrm{int}(D^{2n+1})$</annotation>\u0000 </semantics></math>, for large <math>\u0000 <semantics>\u0000 <mi>g</mi>\u0000 <annotation>$g$</annotation>\u0000 </semantics></math> and <math>\u0000 <semantics>\u0000 <mi>n</mi>\u0000 <annotation>$n$</annotation>\u0000 </semantics></math>, up to degree <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>−</mo>\u0000 <mn>3</mn>\u0000 </mrow>\u0000 <annotation>$n-3$</annotation>\u0000 </semantics></math>. The answer is that it is a free graded commutative algebra on an appropriate set of Miller–Morita–Mumford classes. Our proof goes through the classical three-step procedure: (a) compute the cohomology of the homotopy automorphisms, (b) use surgery to compare this to block diffeomorphisms, and (c) use pseudoisotopy theory and algebraic <math>\u0000 <semantics>\u0000 <mi>K</mi>\u0000 <annotation>$K$</annotation>\u0000 ","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12324","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139655252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Iteration of Cox rings of klt singularities klt 奇点考克斯环的迭代
IF 1.1 2区 数学
Journal of Topology Pub Date : 2024-01-31 DOI: 10.1112/topo.12321
Lukas Braun, Joaquín Moraga
{"title":"Iteration of Cox rings of klt singularities","authors":"Lukas Braun,&nbsp;Joaquín Moraga","doi":"10.1112/topo.12321","DOIUrl":"https://doi.org/10.1112/topo.12321","url":null,"abstract":"<p>In this article, we study the iteration of Cox rings of klt singularities (and Fano varieties) from a topological perspective. Given a klt singularity <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>X</mi>\u0000 <mo>,</mo>\u0000 <mi>Δ</mi>\u0000 <mo>;</mo>\u0000 <mi>x</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(X,Delta;x)$</annotation>\u0000 </semantics></math>, we define the iteration of Cox rings of <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>X</mi>\u0000 <mo>,</mo>\u0000 <mi>Δ</mi>\u0000 <mo>;</mo>\u0000 <mi>x</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(X,Delta;x)$</annotation>\u0000 </semantics></math>. The first result of this article is that the iteration of Cox rings <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>Cox</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>k</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>X</mi>\u0000 <mo>,</mo>\u0000 <mi>Δ</mi>\u0000 <mo>;</mo>\u0000 <mi>x</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>${rm Cox}^{(k)}(X,Delta;x)$</annotation>\u0000 </semantics></math> of a klt singularity stabilizes for <math>\u0000 <semantics>\u0000 <mi>k</mi>\u0000 <annotation>$k$</annotation>\u0000 </semantics></math> large enough. The second result is a boundedness one, we prove that for an <math>\u0000 <semantics>\u0000 <mi>n</mi>\u0000 <annotation>$n$</annotation>\u0000 </semantics></math>-dimensional klt singularity <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>X</mi>\u0000 <mo>,</mo>\u0000 <mi>Δ</mi>\u0000 <mo>;</mo>\u0000 <mi>x</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(X,Delta;x)$</annotation>\u0000 </semantics></math>, the iteration of Cox rings stabilizes for <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 <mo>⩾</mo>\u0000 <mi>c</mi>\u0000 <mo>(</mo>\u0000 <mi>n</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$kgeqslant c(n)$</annotation>\u0000 </semantics></math>, where <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>c</mi>\u0000 <mo>(</mo>\u0000 <mi>n</mi>\u0000 ","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139655253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The second variation of the Hodge norm and higher Prym representations 霍奇规范的第二种变化和更高的普赖姆表征
IF 1.1 2区 数学
Journal of Topology Pub Date : 2024-01-30 DOI: 10.1112/topo.12322
Vladimir Marković, Ognjen Tošić
{"title":"The second variation of the Hodge norm and higher Prym representations","authors":"Vladimir Marković,&nbsp;Ognjen Tošić","doi":"10.1112/topo.12322","DOIUrl":"https://doi.org/10.1112/topo.12322","url":null,"abstract":"<p>Let <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>χ</mi>\u0000 <mo>∈</mo>\u0000 <msup>\u0000 <mi>H</mi>\u0000 <mn>1</mn>\u0000 </msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msub>\u0000 <mi>Σ</mi>\u0000 <mi>h</mi>\u0000 </msub>\u0000 <mo>,</mo>\u0000 <mi>Q</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$chi in H^1(Sigma _h,mathbb {Q})$</annotation>\u0000 </semantics></math> denote a rational cohomology class, and let <math>\u0000 <semantics>\u0000 <msub>\u0000 <mo>H</mo>\u0000 <mi>χ</mi>\u0000 </msub>\u0000 <annotation>$operatorname{H}_chi$</annotation>\u0000 </semantics></math> denote its Hodge norm. We recover the result that <math>\u0000 <semantics>\u0000 <msub>\u0000 <mo>H</mo>\u0000 <mi>χ</mi>\u0000 </msub>\u0000 <annotation>$operatorname{H}_chi$</annotation>\u0000 </semantics></math> is a plurisubharmonic function on the Teichmüller space <math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>T</mi>\u0000 <mi>h</mi>\u0000 </msub>\u0000 <annotation>${mathcal {T}}_h$</annotation>\u0000 </semantics></math>, and characterize complex directions along which the complex Hessian of <math>\u0000 <semantics>\u0000 <msub>\u0000 <mo>H</mo>\u0000 <mi>χ</mi>\u0000 </msub>\u0000 <annotation>$operatorname{H}_chi$</annotation>\u0000 </semantics></math> vanishes. Moreover, we find examples of <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>χ</mi>\u0000 <mo>∈</mo>\u0000 <msup>\u0000 <mi>H</mi>\u0000 <mn>1</mn>\u0000 </msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msub>\u0000 <mi>Σ</mi>\u0000 <mi>h</mi>\u0000 </msub>\u0000 <mo>,</mo>\u0000 <mi>Q</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$chi in H^1(Sigma _{h},mathbb {Q})$</annotation>\u0000 </semantics></math> such that <math>\u0000 <semantics>\u0000 <msub>\u0000 <mo>H</mo>\u0000 <mi>χ</mi>\u0000 </msub>\u0000 <annotation>$operatorname{H}_chi$</annotation>\u0000 </semantics></math> is not strictly plurisubharmonic. As part of this construction, we find an unbranched covering <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>π</mi>\u0000 <mo>:</mo>\u0000 <msub>\u0000 <mi>Σ</mi","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139655308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信