Journal of Topology最新文献

筛选
英文 中文
On the Smith–Thom deficiency of Hilbert squares 论希尔伯特正方形的史密斯-托姆缺陷
IF 1.1 2区 数学
Journal of Topology Pub Date : 2024-05-30 DOI: 10.1112/topo.12345
Viatcheslav Kharlamov, Rareş Răsdeaconu
{"title":"On the Smith–Thom deficiency of Hilbert squares","authors":"Viatcheslav Kharlamov,&nbsp;Rareş Răsdeaconu","doi":"10.1112/topo.12345","DOIUrl":"https://doi.org/10.1112/topo.12345","url":null,"abstract":"<p>We give an expression for the Smith–Thom deficiency of the Hilbert square <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>X</mi>\u0000 <mrow>\u0000 <mo>[</mo>\u0000 <mn>2</mn>\u0000 <mo>]</mo>\u0000 </mrow>\u0000 </msup>\u0000 <annotation>$X^{[2]}$</annotation>\u0000 </semantics></math> of a smooth real algebraic variety <span></span><math>\u0000 <semantics>\u0000 <mi>X</mi>\u0000 <annotation>$X$</annotation>\u0000 </semantics></math> in terms of the rank of a suitable Mayer– Vietoris mapping in several situations. As a consequence, we establish a necessary and sufficient condition for the maximality of <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>X</mi>\u0000 <mrow>\u0000 <mo>[</mo>\u0000 <mn>2</mn>\u0000 <mo>]</mo>\u0000 </mrow>\u0000 </msup>\u0000 <annotation>$X^{[2]}$</annotation>\u0000 </semantics></math> in the case of projective complete intersections, and show that with a few exceptions, no real nonsingular projective complete intersection of even dimension has maximal Hilbert square. We also provide new examples of smooth real algebraic varieties with maximal Hilbert square.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 2","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12345","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141182129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Invertible topological field theories 可逆拓扑场论
IF 1.1 2区 数学
Journal of Topology Pub Date : 2024-05-28 DOI: 10.1112/topo.12335
Christopher Schommer-Pries
{"title":"Invertible topological field theories","authors":"Christopher Schommer-Pries","doi":"10.1112/topo.12335","DOIUrl":"https://doi.org/10.1112/topo.12335","url":null,"abstract":"&lt;p&gt;A &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;d&lt;/mi&gt;\u0000 &lt;annotation&gt;$d$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-dimensional invertible topological field theory (TFT) is a functor from the symmetric monoidal &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;∞&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$(infty,n)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-category of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;d&lt;/mi&gt;\u0000 &lt;annotation&gt;$d$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-bordisms (embedded into &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;R&lt;/mi&gt;\u0000 &lt;mi&gt;∞&lt;/mi&gt;\u0000 &lt;/msup&gt;\u0000 &lt;annotation&gt;$mathbb {R}^infty$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and equipped with a tangential &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;X&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;ξ&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$(X,xi)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-structure) that lands in the Picard subcategory of the target symmetric monoidal &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;∞&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$(infty,n)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-category. We classify these field theories in terms of the cohomology of the &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mi&gt;d&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$(n-d)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-connective cover of the Madsen–Tillmann spectrum. This is accomplished by identifying the classifying space of the &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;∞&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$(infty,n)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-category of bordisms with &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;Ω&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;∞&lt;/mi&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mi&gt;M&lt;/mi&gt;\u0000 &lt;mi&gt;T&lt;/mi&gt;\u0000 &lt;mi&gt;ξ&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 2","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141164808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-accessible localizations 无障碍本地化
IF 1.1 2区 数学
Journal of Topology Pub Date : 2024-05-23 DOI: 10.1112/topo.12336
J. Daniel Christensen
{"title":"Non-accessible localizations","authors":"J. Daniel Christensen","doi":"10.1112/topo.12336","DOIUrl":"https://doi.org/10.1112/topo.12336","url":null,"abstract":"<p>In a 2005 paper, Casacuberta, Scevenels, and Smith construct a homotopy idempotent functor <span></span><math>\u0000 <semantics>\u0000 <mi>E</mi>\u0000 <annotation>$E$</annotation>\u0000 </semantics></math> on the category of simplicial sets with the property that whether it can be expressed as localization with respect to a map <span></span><math>\u0000 <semantics>\u0000 <mi>f</mi>\u0000 <annotation>$f$</annotation>\u0000 </semantics></math> is independent of the ZFC axioms. We show that this construction can be carried out in homotopy type theory. More precisely, we give a general method of associating to a suitable (possibly large) family of maps, a reflective subuniverse of any universe <span></span><math>\u0000 <semantics>\u0000 <mi>U</mi>\u0000 <annotation>$mathcal {U}$</annotation>\u0000 </semantics></math>. When specialized to an appropriate family, this produces a localization which when interpreted in the <span></span><math>\u0000 <semantics>\u0000 <mi>∞</mi>\u0000 <annotation>$infty$</annotation>\u0000 </semantics></math>-topos of spaces agrees with the localization corresponding to <span></span><math>\u0000 <semantics>\u0000 <mi>E</mi>\u0000 <annotation>$E$</annotation>\u0000 </semantics></math>. Our approach generalizes the approach of Casacuberta et al. (Adv. Math. <b>197</b> (2005), no. 1, 120–139) in two ways. First, by working in homotopy type theory, our construction can be interpreted in any <span></span><math>\u0000 <semantics>\u0000 <mi>∞</mi>\u0000 <annotation>$infty$</annotation>\u0000 </semantics></math>-topos. Second, while the local objects produced by Casacuberta et al. are always 1-types, our construction can produce <span></span><math>\u0000 <semantics>\u0000 <mi>n</mi>\u0000 <annotation>$n$</annotation>\u0000 </semantics></math>-types, for any <span></span><math>\u0000 <semantics>\u0000 <mi>n</mi>\u0000 <annotation>$n$</annotation>\u0000 </semantics></math>. This is new, even in the <span></span><math>\u0000 <semantics>\u0000 <mi>∞</mi>\u0000 <annotation>$infty$</annotation>\u0000 </semantics></math>-topos of spaces. In addition, by making use of universes, our proof is very direct. Along the way, we prove many results about “small” types that are of independent interest. As an application, we give a new proof that separated localizations exist. We also give results that say when a localization with respect to a family of maps can be presented as localization with respect to a single map, and show that the simplicial model satisfies a strong form of the axiom of choice that implies that sets cover and that the law of excluded middle holds.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 2","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12336","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141085022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stabilization distance bounds from link Floer homology 链路浮子同源性的稳定距离界限
IF 1.1 2区 数学
Journal of Topology Pub Date : 2024-05-22 DOI: 10.1112/topo.12338
András Juhász, Ian Zemke
{"title":"Stabilization distance bounds from link Floer homology","authors":"András Juhász,&nbsp;Ian Zemke","doi":"10.1112/topo.12338","DOIUrl":"https://doi.org/10.1112/topo.12338","url":null,"abstract":"<p>We consider the set of connected surfaces in the 4-ball with boundary a fixed knot in the 3-sphere. We define the stabilization distance between two surfaces as the minimal <span></span><math>\u0000 <semantics>\u0000 <mi>g</mi>\u0000 <annotation>$g$</annotation>\u0000 </semantics></math> such that we can get from one to the other using stabilizations and destabilizations through surfaces of genus at most <span></span><math>\u0000 <semantics>\u0000 <mi>g</mi>\u0000 <annotation>$g$</annotation>\u0000 </semantics></math>. Similarly, we consider a double-point distance between two surfaces of the same genus that is the minimum over all regular homotopies connecting the two surfaces of the maximal number of double points appearing in the homotopy. To many of the concordance invariants defined using Heegaard Floer homology, we construct an analogous invariant for a pair of surfaces. We show that these give lower bounds on the stabilization distance and the double-point distance. We compute our invariants for some pairs of deform-spun slice disks by proving a trace formula on the full infinity knot Floer complex, and by determining the action on knot Floer homology of an automorphism of the connected sum of a knot with itself that swaps the two summands. We use our invariants to find pairs of slice disks with arbitrarily large distance with respect to many of the metrics we consider in this paper. We also answer a slice-disk analog of Problem 1.105 (B) from Kirby's problem list by showing the existence of non-0-cobordant slice disks.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 2","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12338","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141084980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Torus knot filtered embedded contact homology of the tight contact 3-sphere 紧密接触三球体的环结滤波嵌入接触同源性
IF 1.1 2区 数学
Journal of Topology Pub Date : 2024-05-22 DOI: 10.1112/topo.12331
Jo Nelson, Morgan Weiler
{"title":"Torus knot filtered embedded contact homology of the tight contact 3-sphere","authors":"Jo Nelson,&nbsp;Morgan Weiler","doi":"10.1112/topo.12331","DOIUrl":"https://doi.org/10.1112/topo.12331","url":null,"abstract":"<p>Knot filtered embedded contact homology was first introduced by Hutchings in 2015; it has been computed for the standard transverse unknot in irrational ellipsoids by Hutchings and for the Hopf link in lens spaces <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>L</mi>\u0000 <mo>(</mo>\u0000 <mi>n</mi>\u0000 <mo>,</mo>\u0000 <mi>n</mi>\u0000 <mo>−</mo>\u0000 <mn>1</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$L(n,n-1)$</annotation>\u0000 </semantics></math> via a quotient by Weiler. While toric constructions can be used to understand the ECH chain complexes of many contact forms adapted to open books with binding the unknot and Hopf link, they do not readily adapt to general torus knots and links. In this paper, we generalize the definition and invariance of knot filtered embedded contact homology to allow for degenerate knots with rational rotation numbers. We then develop new methods for understanding the embedded contact homology chain complex of positive torus knotted fibrations of the standard tight contact 3-sphere in terms of their presentation as open books and as Seifert fiber spaces. We provide Morse–Bott methods, using a doubly filtered complex and the energy filtered perturbed Seiberg–Witten Floer theory developed by Hutchings and Taubes, and use them to compute the <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>T</mi>\u0000 <mo>(</mo>\u0000 <mn>2</mn>\u0000 <mo>,</mo>\u0000 <mi>q</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$T(2,q)$</annotation>\u0000 </semantics></math> knot filtered embedded contact homology, for <span></span><math>\u0000 <semantics>\u0000 <mi>q</mi>\u0000 <annotation>$q$</annotation>\u0000 </semantics></math> odd and positive.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 2","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141084978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Knotted families from graspers 来自抓握器的打结家庭
IF 1.1 2区 数学
Journal of Topology Pub Date : 2024-05-09 DOI: 10.1112/topo.12337
Danica Kosanović
{"title":"Knotted families from graspers","authors":"Danica Kosanović","doi":"10.1112/topo.12337","DOIUrl":"https://doi.org/10.1112/topo.12337","url":null,"abstract":"<p>For any smooth manifold <span></span><math>\u0000 <semantics>\u0000 <mi>M</mi>\u0000 <annotation>$M$</annotation>\u0000 </semantics></math> of dimension <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>d</mi>\u0000 <mo>⩾</mo>\u0000 <mn>4</mn>\u0000 </mrow>\u0000 <annotation>$dgeqslant 4$</annotation>\u0000 </semantics></math>, we construct explicit classes in homotopy groups of spaces of embeddings of either an arc or a circle into <span></span><math>\u0000 <semantics>\u0000 <mi>M</mi>\u0000 <annotation>$M$</annotation>\u0000 </semantics></math>, in every degree that is a multiple of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>d</mi>\u0000 <mo>−</mo>\u0000 <mn>3</mn>\u0000 </mrow>\u0000 <annotation>$d-3$</annotation>\u0000 </semantics></math>, and show that they are detected in the Taylor tower of Goodwillie and Weiss. The classes are obtained from families of string links constructed in the <span></span><math>\u0000 <semantics>\u0000 <mi>d</mi>\u0000 <annotation>$d$</annotation>\u0000 </semantics></math>-ball.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 2","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12337","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140902759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Picard sheaves, local Brauer groups, and topological modular forms Picard 剪切、局部布劳尔群和拓扑模态
IF 1.1 2区 数学
Journal of Topology Pub Date : 2024-05-07 DOI: 10.1112/topo.12333
Benjamin Antieau, Lennart Meier, Vesna Stojanoska
{"title":"Picard sheaves, local Brauer groups, and topological modular forms","authors":"Benjamin Antieau,&nbsp;Lennart Meier,&nbsp;Vesna Stojanoska","doi":"10.1112/topo.12333","DOIUrl":"https://doi.org/10.1112/topo.12333","url":null,"abstract":"<p>We develop tools to analyze and compare the Brauer groups of spectra such as periodic complex and real <span></span><math>\u0000 <semantics>\u0000 <mi>K</mi>\u0000 <annotation>$K$</annotation>\u0000 </semantics></math>-theory and topological modular forms, as well as the derived moduli stack of elliptic curves. In particular, we prove that the Brauer group of <span></span><math>\u0000 <semantics>\u0000 <mi>TMF</mi>\u0000 <annotation>$mathrm{TMF}$</annotation>\u0000 </semantics></math> is isomorphic to the Brauer group of the derived moduli stack of elliptic curves. Our main computational focus is on the subgroup of the Brauer group consisting of elements trivialized by some étale extension, which we call the local Brauer group. Essential information about this group can be accessed by a thorough understanding of the Picard sheaf and its cohomology. We deduce enough information about the Picard sheaf of <span></span><math>\u0000 <semantics>\u0000 <mi>TMF</mi>\u0000 <annotation>$mathrm{TMF}$</annotation>\u0000 </semantics></math> and the (derived) moduli stack of elliptic curves to determine the structure of their local Brauer groups away from the prime 2. At 2, we show that they are both infinitely generated and agree up to a potential error term that is a finite 2-torsion group.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 2","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12333","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140844924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Convex co-compact representations of 3-manifold groups 3 个曲面群的凸共容表征
IF 1.1 2区 数学
Journal of Topology Pub Date : 2024-05-01 DOI: 10.1112/topo.12332
Mitul Islam, Andrew Zimmer
{"title":"Convex co-compact representations of 3-manifold groups","authors":"Mitul Islam,&nbsp;Andrew Zimmer","doi":"10.1112/topo.12332","DOIUrl":"https://doi.org/10.1112/topo.12332","url":null,"abstract":"<p>A representation of a finitely generated group into the projective general linear group is called convex co-compact if it has finite kernel and its image acts convex co-compactly on a properly convex domain in real projective space. We prove that the fundamental group of a closed irreducible orientable 3-manifold can admit such a representation only when the manifold is geometric (with Euclidean, Hyperbolic or Euclidean <span></span><math>\u0000 <semantics>\u0000 <mo>×</mo>\u0000 <annotation>$times$</annotation>\u0000 </semantics></math> Hyperbolic geometry) or when every component in the geometric decomposition is hyperbolic. In each case, we describe the structure of such examples.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 2","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12332","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140818858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Koszul self-duality of manifolds 流形的科斯祖尔自对偶性
IF 1.1 2区 数学
Journal of Topology Pub Date : 2024-04-29 DOI: 10.1112/topo.12334
Connor Malin
{"title":"Koszul self-duality of manifolds","authors":"Connor Malin","doi":"10.1112/topo.12334","DOIUrl":"https://doi.org/10.1112/topo.12334","url":null,"abstract":"<p>We show that Koszul duality for operads in <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>Top</mi>\u0000 <mo>,</mo>\u0000 <mo>×</mo>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(mathrm{Top},times)$</annotation>\u0000 </semantics></math> can be expressed via generalized Thom complexes. As an application, we prove the Koszul self-duality of the right module <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>E</mi>\u0000 <mi>M</mi>\u0000 </msub>\u0000 <annotation>$E_M$</annotation>\u0000 </semantics></math> associated to a framed manifold <span></span><math>\u0000 <semantics>\u0000 <mi>M</mi>\u0000 <annotation>$M$</annotation>\u0000 </semantics></math>. We discuss implications for factorization homology, embedding calculus, and confirm an old conjecture of Ching on the relation of Goodwillie calculus to manifold calculus.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 2","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140808033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Brane structures in microlocal sheaf theory 微局域剪切理论中的线性结构
IF 1.1 2区 数学
Journal of Topology Pub Date : 2024-03-14 DOI: 10.1112/topo.12325
Xin Jin, David Treumann
{"title":"Brane structures in microlocal sheaf theory","authors":"Xin Jin,&nbsp;David Treumann","doi":"10.1112/topo.12325","DOIUrl":"10.1112/topo.12325","url":null,"abstract":"<p>Let <math>\u0000 <semantics>\u0000 <mi>L</mi>\u0000 <annotation>$L$</annotation>\u0000 </semantics></math> be an exact Lagrangian submanifold of a cotangent bundle <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>T</mi>\u0000 <mo>∗</mo>\u0000 </msup>\u0000 <mi>M</mi>\u0000 </mrow>\u0000 <annotation>$T^* M$</annotation>\u0000 </semantics></math>, asymptotic to a Legendrian submanifold <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Λ</mi>\u0000 <mo>⊂</mo>\u0000 <msup>\u0000 <mi>T</mi>\u0000 <mi>∞</mi>\u0000 </msup>\u0000 <mi>M</mi>\u0000 </mrow>\u0000 <annotation>$Lambda subset T^{infty } M$</annotation>\u0000 </semantics></math>. We study a locally constant sheaf of <math>\u0000 <semantics>\u0000 <mi>∞</mi>\u0000 <annotation>$infty$</annotation>\u0000 </semantics></math>-categories on <math>\u0000 <semantics>\u0000 <mi>L</mi>\u0000 <annotation>$L$</annotation>\u0000 </semantics></math>, called the sheaf of brane structures or <math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>Brane</mi>\u0000 <mi>L</mi>\u0000 </msub>\u0000 <annotation>$mathrm{Brane}_L$</annotation>\u0000 </semantics></math>. Its fiber is the <math>\u0000 <semantics>\u0000 <mi>∞</mi>\u0000 <annotation>$infty$</annotation>\u0000 </semantics></math>-category of spectra, and we construct a Hamiltonian invariant, fully faithful functor from <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Γ</mi>\u0000 <mo>(</mo>\u0000 <mi>L</mi>\u0000 <mo>,</mo>\u0000 <msub>\u0000 <mi>Brane</mi>\u0000 <mi>L</mi>\u0000 </msub>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$Gamma (L,mathrm{Brane}_L)$</annotation>\u0000 </semantics></math> to the <math>\u0000 <semantics>\u0000 <mi>∞</mi>\u0000 <annotation>$infty$</annotation>\u0000 </semantics></math>-category of sheaves of spectra on <math>\u0000 <semantics>\u0000 <mi>M</mi>\u0000 <annotation>$M$</annotation>\u0000 </semantics></math> with singular support in <math>\u0000 <semantics>\u0000 <mi>Λ</mi>\u0000 <annotation>$Lambda$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12325","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140124243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信