{"title":"Convex co-compact representations of 3-manifold groups","authors":"Mitul Islam, Andrew Zimmer","doi":"10.1112/topo.12332","DOIUrl":"https://doi.org/10.1112/topo.12332","url":null,"abstract":"<p>A representation of a finitely generated group into the projective general linear group is called convex co-compact if it has finite kernel and its image acts convex co-compactly on a properly convex domain in real projective space. We prove that the fundamental group of a closed irreducible orientable 3-manifold can admit such a representation only when the manifold is geometric (with Euclidean, Hyperbolic or Euclidean <span></span><math>\u0000 <semantics>\u0000 <mo>×</mo>\u0000 <annotation>$times$</annotation>\u0000 </semantics></math> Hyperbolic geometry) or when every component in the geometric decomposition is hyperbolic. In each case, we describe the structure of such examples.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12332","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140818858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Koszul self-duality of manifolds","authors":"Connor Malin","doi":"10.1112/topo.12334","DOIUrl":"https://doi.org/10.1112/topo.12334","url":null,"abstract":"<p>We show that Koszul duality for operads in <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>Top</mi>\u0000 <mo>,</mo>\u0000 <mo>×</mo>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(mathrm{Top},times)$</annotation>\u0000 </semantics></math> can be expressed via generalized Thom complexes. As an application, we prove the Koszul self-duality of the right module <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>E</mi>\u0000 <mi>M</mi>\u0000 </msub>\u0000 <annotation>$E_M$</annotation>\u0000 </semantics></math> associated to a framed manifold <span></span><math>\u0000 <semantics>\u0000 <mi>M</mi>\u0000 <annotation>$M$</annotation>\u0000 </semantics></math>. We discuss implications for factorization homology, embedding calculus, and confirm an old conjecture of Ching on the relation of Goodwillie calculus to manifold calculus.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140808033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Brane structures in microlocal sheaf theory","authors":"Xin Jin, David Treumann","doi":"10.1112/topo.12325","DOIUrl":"10.1112/topo.12325","url":null,"abstract":"<p>Let <math>\u0000 <semantics>\u0000 <mi>L</mi>\u0000 <annotation>$L$</annotation>\u0000 </semantics></math> be an exact Lagrangian submanifold of a cotangent bundle <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>T</mi>\u0000 <mo>∗</mo>\u0000 </msup>\u0000 <mi>M</mi>\u0000 </mrow>\u0000 <annotation>$T^* M$</annotation>\u0000 </semantics></math>, asymptotic to a Legendrian submanifold <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Λ</mi>\u0000 <mo>⊂</mo>\u0000 <msup>\u0000 <mi>T</mi>\u0000 <mi>∞</mi>\u0000 </msup>\u0000 <mi>M</mi>\u0000 </mrow>\u0000 <annotation>$Lambda subset T^{infty } M$</annotation>\u0000 </semantics></math>. We study a locally constant sheaf of <math>\u0000 <semantics>\u0000 <mi>∞</mi>\u0000 <annotation>$infty$</annotation>\u0000 </semantics></math>-categories on <math>\u0000 <semantics>\u0000 <mi>L</mi>\u0000 <annotation>$L$</annotation>\u0000 </semantics></math>, called the sheaf of brane structures or <math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>Brane</mi>\u0000 <mi>L</mi>\u0000 </msub>\u0000 <annotation>$mathrm{Brane}_L$</annotation>\u0000 </semantics></math>. Its fiber is the <math>\u0000 <semantics>\u0000 <mi>∞</mi>\u0000 <annotation>$infty$</annotation>\u0000 </semantics></math>-category of spectra, and we construct a Hamiltonian invariant, fully faithful functor from <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Γ</mi>\u0000 <mo>(</mo>\u0000 <mi>L</mi>\u0000 <mo>,</mo>\u0000 <msub>\u0000 <mi>Brane</mi>\u0000 <mi>L</mi>\u0000 </msub>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$Gamma (L,mathrm{Brane}_L)$</annotation>\u0000 </semantics></math> to the <math>\u0000 <semantics>\u0000 <mi>∞</mi>\u0000 <annotation>$infty$</annotation>\u0000 </semantics></math>-category of sheaves of spectra on <math>\u0000 <semantics>\u0000 <mi>M</mi>\u0000 <annotation>$M$</annotation>\u0000 </semantics></math> with singular support in <math>\u0000 <semantics>\u0000 <mi>Λ</mi>\u0000 <annotation>$Lambda$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12325","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140124243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Equivariant Lagrangian Floer homology via cotangent bundles of \u0000 \u0000 \u0000 E\u0000 \u0000 G\u0000 N\u0000 \u0000 \u0000 $EG_N$","authors":"Guillem Cazassus","doi":"10.1112/topo.12328","DOIUrl":"https://doi.org/10.1112/topo.12328","url":null,"abstract":"<p>We provide a construction of equivariant Lagrangian Floer homology <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>H</mi>\u0000 <msub>\u0000 <mi>F</mi>\u0000 <mi>G</mi>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msub>\u0000 <mi>L</mi>\u0000 <mn>0</mn>\u0000 </msub>\u0000 <mo>,</mo>\u0000 <msub>\u0000 <mi>L</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$HF_G(L_0, L_1)$</annotation>\u0000 </semantics></math>, for a compact Lie group <math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math> acting on a symplectic manifold <math>\u0000 <semantics>\u0000 <mi>M</mi>\u0000 <annotation>$M$</annotation>\u0000 </semantics></math> in a Hamiltonian fashion, and a pair of <math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math>-Lagrangian submanifolds <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>L</mi>\u0000 <mn>0</mn>\u0000 </msub>\u0000 <mo>,</mo>\u0000 <msub>\u0000 <mi>L</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <mo>⊂</mo>\u0000 <mi>M</mi>\u0000 </mrow>\u0000 <annotation>$L_0, L_1 subset M$</annotation>\u0000 </semantics></math>. We do so by using symplectic homotopy quotients involving cotangent bundles of an approximation of <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>E</mi>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation>$EG$</annotation>\u0000 </semantics></math>. Our construction relies on Wehrheim and Woodward's theory of quilts, and the telescope construction. We show that these groups are independent of the auxiliary choices involved in their construction, and are <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>H</mi>\u0000 <mo>∗</mo>\u0000 </msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>B</mi>\u0000 <mi>G</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$H^*(BG)$</annotation>\u0000 </semantics></math>-bimodules. In the case w","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12328","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140114186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}