Journal of Topology最新文献

筛选
英文 中文
A realisation result for moduli spaces of group actions on the line 线上群作用模空间的实现结果
IF 0.8 2区 数学
Journal of Topology Pub Date : 2024-10-05 DOI: 10.1112/topo.12357
Joaquín Brum, Nicolás Matte Bon, Cristóbal Rivas, Michele Triestino
{"title":"A realisation result for moduli spaces of group actions on the line","authors":"Joaquín Brum,&nbsp;Nicolás Matte Bon,&nbsp;Cristóbal Rivas,&nbsp;Michele Triestino","doi":"10.1112/topo.12357","DOIUrl":"https://doi.org/10.1112/topo.12357","url":null,"abstract":"<p>Given a finitely generated group <span></span><math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math>, the possible actions of <span></span><math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math> on the real line (without global fixed points), considered up to semi-conjugacy, can be encoded by the space of orbits of a flow on a compact space <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>Y</mi>\u0000 <mo>,</mo>\u0000 <mi>Φ</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(Y, Phi)$</annotation>\u0000 </semantics></math> naturally associated with <span></span><math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math> and uniquely defined up to flow equivalence, that we call the <i>Deroin space</i> of <span></span><math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math>. We show a realisation result: every expansive flow <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>Y</mi>\u0000 <mo>,</mo>\u0000 <mi>Φ</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(Y, Phi)$</annotation>\u0000 </semantics></math> on a compact metrisable space of topological dimension 1, satisfying some mild additional assumptions, arises as the Deroin space of a finitely generated group. This is proven by identifying the Deroin space of an explicit family of groups acting on suspension flows of subshifts, which is a variant of a construction introduced by the second and fourth authors. This result provides a source of examples of finitely generated groups satisfying various new phenomena for actions on the line, related to their rigidity/flexibility properties and to the structure of (path-)connected components of the space of actions.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 4","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142435192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Morse numbers of complex polynomials 复多项式的莫尔斯数
IF 0.8 2区 数学
Journal of Topology Pub Date : 2024-10-05 DOI: 10.1112/topo.12362
Laurenţiu Maxim, Mihai Tibăr
{"title":"Morse numbers of complex polynomials","authors":"Laurenţiu Maxim,&nbsp;Mihai Tibăr","doi":"10.1112/topo.12362","DOIUrl":"https://doi.org/10.1112/topo.12362","url":null,"abstract":"<p>To a complex polynomial function <span></span><math>\u0000 <semantics>\u0000 <mi>f</mi>\u0000 <annotation>$f$</annotation>\u0000 </semantics></math> with arbitrary singularities, we associate the number of Morse points in a general linear Morsification <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>f</mi>\u0000 <mi>t</mi>\u0000 </msub>\u0000 <mo>:</mo>\u0000 <mo>=</mo>\u0000 <mi>f</mi>\u0000 <mo>−</mo>\u0000 <mi>t</mi>\u0000 <mi>ℓ</mi>\u0000 </mrow>\u0000 <annotation>$f_{t}:= f - tell$</annotation>\u0000 </semantics></math>. We produce computable algebraic formulae in terms of invariants of <span></span><math>\u0000 <semantics>\u0000 <mi>f</mi>\u0000 <annotation>$f$</annotation>\u0000 </semantics></math> for the numbers of stratwise Morse trajectories that abut, as <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>t</mi>\u0000 <mo>→</mo>\u0000 <mn>0</mn>\u0000 </mrow>\u0000 <annotation>$trightarrow 0$</annotation>\u0000 </semantics></math>, to some point of the space or at infinity.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 4","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12362","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142435191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stated SL( n $n$ )-skein modules and algebras 陈述的 SL( n $n$ )-斯琴模块和代数
IF 0.8 2区 数学
Journal of Topology Pub Date : 2024-08-21 DOI: 10.1112/topo.12350
Thang T. Q. Lê, Adam S. Sikora
{"title":"Stated SL(\u0000 \u0000 n\u0000 $n$\u0000 )-skein modules and algebras","authors":"Thang T. Q. Lê,&nbsp;Adam S. Sikora","doi":"10.1112/topo.12350","DOIUrl":"https://doi.org/10.1112/topo.12350","url":null,"abstract":"&lt;p&gt;We develop a theory of stated SL(&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;annotation&gt;$n$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;)-skein modules, &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;S&lt;/mi&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;M&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$mathcal {S}_n(M,mathcal {N})$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, of 3-manifolds &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;M&lt;/mi&gt;\u0000 &lt;annotation&gt;$M$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; marked with intervals &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 &lt;annotation&gt;$mathcal {N}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; in their boundaries. These skein modules, generalizing stated SL(2)-modules of the first author, stated SL(3)-modules of Higgins', and SU(n)-skein modules of the second author, consist of linear combinations of framed, oriented graphs, called &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;annotation&gt;$n$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-webs, with ends in &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 &lt;annotation&gt;$mathcal {N}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, considered up to skein relations of the &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;U&lt;/mi&gt;\u0000 &lt;mi&gt;q&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;s&lt;/mi&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;l&lt;/mi&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$U_q(sl_n)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-Reshetikhin–Turaev functor on tangles, involving coupons representing the anti-symmetrizer and its dual. We prove the Splitting Theorem asserting that cutting of a marked 3-manifold &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;M&lt;/mi&gt;\u0000 &lt;annotation&gt;$M$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; along a disk resulting in a 3-manifold &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;M&lt;/mi&gt;\u0000 &lt;mo&gt;′&lt;/mo&gt;\u0000 &lt;/msup&gt;\u0000 &lt;annotation&gt;$M^{prime }$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; yields a homomorphism &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;S&lt;/mi&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 ","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 3","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142041631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A combinatorial take on hierarchical hyperbolicity and applications to quotients of mapping class groups 分层双曲性的组合观点及其在映射类群商中的应用
IF 0.8 2区 数学
Journal of Topology Pub Date : 2024-08-10 DOI: 10.1112/topo.12351
Jason Behrstock, Mark Hagen, Alexandre Martin, Alessandro Sisto
{"title":"A combinatorial take on hierarchical hyperbolicity and applications to quotients of mapping class groups","authors":"Jason Behrstock,&nbsp;Mark Hagen,&nbsp;Alexandre Martin,&nbsp;Alessandro Sisto","doi":"10.1112/topo.12351","DOIUrl":"https://doi.org/10.1112/topo.12351","url":null,"abstract":"<p>We give a simple combinatorial criterion, in terms of an action on a hyperbolic simplicial complex, for a group to be hierarchically hyperbolic. We apply this to show that quotients of mapping class groups by large powers of Dehn twists are hierarchically hyperbolic (and even relatively hyperbolic in the genus 2 case). In genus at least three, there are no known infinite hyperbolic quotients of mapping class groups. However, using the hierarchically hyperbolic quotients we construct, we show, under a residual finiteness assumption, that mapping class groups have many nonelementary hyperbolic quotients. Using these quotients, we relate questions of Reid and Bridson–Reid–Wilton about finite quotients of mapping class groups to residual finiteness of specific hyperbolic groups.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 3","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141967845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regularity of limit sets of Anosov representations 阿诺索夫表征极限集的规律性
IF 0.8 2区 数学
Journal of Topology Pub Date : 2024-08-03 DOI: 10.1112/topo.12355
Tengren Zhang, Andrew Zimmer
{"title":"Regularity of limit sets of Anosov representations","authors":"Tengren Zhang,&nbsp;Andrew Zimmer","doi":"10.1112/topo.12355","DOIUrl":"https://doi.org/10.1112/topo.12355","url":null,"abstract":"<p>In this paper, we establish necessary and sufficient conditions for the limit set of a projective Anosov representation to be a <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>C</mi>\u0000 <mi>α</mi>\u0000 </msup>\u0000 <annotation>$C^{alpha }$</annotation>\u0000 </semantics></math>-submanifold of the real projective space for some <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>α</mi>\u0000 <mo>∈</mo>\u0000 <mo>(</mo>\u0000 <mn>1</mn>\u0000 <mo>,</mo>\u0000 <mn>2</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$alpha in (1,2)$</annotation>\u0000 </semantics></math>. We also calculate the optimal value of <span></span><math>\u0000 <semantics>\u0000 <mi>α</mi>\u0000 <annotation>$alpha$</annotation>\u0000 </semantics></math> in terms of the eigenvalue data of the Anosov representation.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 3","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141967139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coarse cubical rigidity 粗立方体刚度
IF 0.8 2区 数学
Journal of Topology Pub Date : 2024-08-03 DOI: 10.1112/topo.12353
Elia Fioravanti, Ivan Levcovitz, Michah Sageev
{"title":"Coarse cubical rigidity","authors":"Elia Fioravanti,&nbsp;Ivan Levcovitz,&nbsp;Michah Sageev","doi":"10.1112/topo.12353","DOIUrl":"https://doi.org/10.1112/topo.12353","url":null,"abstract":"<p>We show that for many right-angled Artin and Coxeter groups, all cocompact cubulations coarsely look the same: They induce the same coarse median structure on the group. These are the first examples of non-hyperbolic groups with this property. For all graph products of finite groups and for Coxeter groups with no irreducible affine parabolic subgroups of rank <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>⩾</mo>\u0000 <mn>3</mn>\u0000 </mrow>\u0000 <annotation>$geqslant 3$</annotation>\u0000 </semantics></math>, we show that all automorphisms preserve the coarse median structure induced, respectively, by the Davis complex and the Niblo–Reeves cubulation. As a consequence, automorphisms of these groups have nice fixed subgroups and satisfy Nielsen realisation.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 3","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12353","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141967142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Degenerations of k $k$ -positive surface group representations k $k$ 正表面群表示的退化
IF 0.8 2区 数学
Journal of Topology Pub Date : 2024-08-03 DOI: 10.1112/topo.12352
Jonas Beyrer, Beatrice Pozzetti
{"title":"Degenerations of \u0000 \u0000 k\u0000 $k$\u0000 -positive surface group representations","authors":"Jonas Beyrer,&nbsp;Beatrice Pozzetti","doi":"10.1112/topo.12352","DOIUrl":"https://doi.org/10.1112/topo.12352","url":null,"abstract":"<p>We introduce <span></span><math>\u0000 <semantics>\u0000 <mi>k</mi>\u0000 <annotation>$k$</annotation>\u0000 </semantics></math>-<i>positive representations</i>, a large class of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>{</mo>\u0000 <mn>1</mn>\u0000 <mo>,</mo>\u0000 <mtext>…</mtext>\u0000 <mo>,</mo>\u0000 <mi>k</mi>\u0000 <mo>}</mo>\u0000 </mrow>\u0000 <annotation>$lbrace 1,ldots ,krbrace$</annotation>\u0000 </semantics></math>-Anosov surface group representations into <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>PGL</mi>\u0000 <mo>(</mo>\u0000 <mi>E</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$mathsf {PGL}(E)$</annotation>\u0000 </semantics></math> that share many features with Hitchin representations, and we study their degenerations: unless they are Hitchin, they can be deformed to non-discrete representations, but any limit is at least <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>k</mi>\u0000 <mo>−</mo>\u0000 <mn>3</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(k-3)$</annotation>\u0000 </semantics></math>-positive and irreducible limits are <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>k</mi>\u0000 <mo>−</mo>\u0000 <mn>1</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(k-1)$</annotation>\u0000 </semantics></math>-positive. A major ingredient, of independent interest, is a general limit theorem for positively ratioed representations.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 3","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141967138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Homeomorphism groups of 2-manifolds with the virtual Rokhlin property 具有虚拟 Rokhlin 属性的 2-manifolds 的同构群
IF 0.8 2区 数学
Journal of Topology Pub Date : 2024-07-29 DOI: 10.1112/topo.12354
Justin Lanier, Nicholas G. Vlamis
{"title":"Homeomorphism groups of 2-manifolds with the virtual Rokhlin property","authors":"Justin Lanier,&nbsp;Nicholas G. Vlamis","doi":"10.1112/topo.12354","DOIUrl":"https://doi.org/10.1112/topo.12354","url":null,"abstract":"<p>We introduce and motivate the definition of the virtual Rokhlin property for topological groups. We then classify the 2-manifolds whose homeomorphism groups have the virtual Rokhlin property. We also establish the analogous result for mapping class groups of 2-manifolds.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 3","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141968286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Applications of higher-dimensional Heegaard Floer homology to contact topology 高维 Heegaard Floer 同调在接触拓扑学中的应用
IF 0.8 2区 数学
Journal of Topology Pub Date : 2024-07-11 DOI: 10.1112/topo.12349
Vincent Colin, Ko Honda, Yin Tian
{"title":"Applications of higher-dimensional Heegaard Floer homology to contact topology","authors":"Vincent Colin,&nbsp;Ko Honda,&nbsp;Yin Tian","doi":"10.1112/topo.12349","DOIUrl":"https://doi.org/10.1112/topo.12349","url":null,"abstract":"<p>The goal of this paper is to set up the general framework of higher-dimensional Heegaard Floer homology, define the contact class, and use it to give an obstruction to the Liouville fillability of a contact manifold and a sufficient condition for the Weinstein conjecture to hold. We discuss several classes of examples including those coming from analyzing a close cousin of symplectic Khovanov homology and the analog of the Plamenevskaya invariant of transverse links.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 3","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141597127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characteristic cohomology II: Matrix singularities 特性同调 II:矩阵奇点
IF 0.8 2区 数学
Journal of Topology Pub Date : 2024-06-27 DOI: 10.1112/topo.12330
James Damon
{"title":"Characteristic cohomology II: Matrix singularities","authors":"James Damon","doi":"10.1112/topo.12330","DOIUrl":"https://doi.org/10.1112/topo.12330","url":null,"abstract":"&lt;p&gt;For a germ of a variety &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;V&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;mo&gt;⊂&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;C&lt;/mi&gt;\u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$mathcal {V}, 0 subset mathbb {C}^N, 0$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, a singularity &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;V&lt;/mi&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;annotation&gt;$mathcal {V}_0$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; of “type &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;V&lt;/mi&gt;\u0000 &lt;annotation&gt;$mathcal {V}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;”  is given by a germ &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;f&lt;/mi&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;:&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;C&lt;/mi&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;mo&gt;→&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;C&lt;/mi&gt;\u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$f_0: mathbb {C}^n, 0 rightarrow mathbb {C}^N, 0$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, which is transverse to &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;V&lt;/mi&gt;\u0000 &lt;mo&gt;∖&lt;/mo&gt;\u0000 &lt;mo&gt;{&lt;/mo&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;mo&gt;}&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$mathcal {V}setminus lbrace 0rbrace$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; in an appropriate sense, such that &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;V&lt;/mi&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;msubsup&gt;\u0000 &lt;mi&gt;f&lt;/mi&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msubsup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;V&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$mathcal {V}_0 = f_0^{-1}(mathcal {V})$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. In part I of this paper, we introduced for such singularities the Characteristic Cohomology for the Milnor fiber (for &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 ","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 3","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141488838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信