A combinatorial take on hierarchical hyperbolicity and applications to quotients of mapping class groups

Pub Date : 2024-08-10 DOI:10.1112/topo.12351
Jason Behrstock, Mark Hagen, Alexandre Martin, Alessandro Sisto
{"title":"A combinatorial take on hierarchical hyperbolicity and applications to quotients of mapping class groups","authors":"Jason Behrstock,&nbsp;Mark Hagen,&nbsp;Alexandre Martin,&nbsp;Alessandro Sisto","doi":"10.1112/topo.12351","DOIUrl":null,"url":null,"abstract":"<p>We give a simple combinatorial criterion, in terms of an action on a hyperbolic simplicial complex, for a group to be hierarchically hyperbolic. We apply this to show that quotients of mapping class groups by large powers of Dehn twists are hierarchically hyperbolic (and even relatively hyperbolic in the genus 2 case). In genus at least three, there are no known infinite hyperbolic quotients of mapping class groups. However, using the hierarchically hyperbolic quotients we construct, we show, under a residual finiteness assumption, that mapping class groups have many nonelementary hyperbolic quotients. Using these quotients, we relate questions of Reid and Bridson–Reid–Wilton about finite quotients of mapping class groups to residual finiteness of specific hyperbolic groups.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We give a simple combinatorial criterion, in terms of an action on a hyperbolic simplicial complex, for a group to be hierarchically hyperbolic. We apply this to show that quotients of mapping class groups by large powers of Dehn twists are hierarchically hyperbolic (and even relatively hyperbolic in the genus 2 case). In genus at least three, there are no known infinite hyperbolic quotients of mapping class groups. However, using the hierarchically hyperbolic quotients we construct, we show, under a residual finiteness assumption, that mapping class groups have many nonelementary hyperbolic quotients. Using these quotients, we relate questions of Reid and Bridson–Reid–Wilton about finite quotients of mapping class groups to residual finiteness of specific hyperbolic groups.

分享
查看原文
分层双曲性的组合观点及其在映射类群商中的应用
我们根据双曲简复上的作用给出了一个简单的组合标准,即一个群是层次双曲的。我们应用这一标准来证明,由 Dehn 扭矩的大幂构成的映射类群的商是层次双曲的(甚至在属 2 的情况下是相对双曲的)。在至少三属中,没有已知的映射类群的无限双曲商。然而,利用我们构建的层次双曲商,我们证明,在残余有限性假设下,映射类群有许多非元素双曲商。利用这些商,我们将里德和布里奇森-里德-维尔顿关于映射类群有限商的问题与特定双曲群的剩余有限性联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信