{"title":"On the homology of big mapping class groups","authors":"Martin Palmer, Xiaolei Wu","doi":"10.1112/topo.12358","DOIUrl":null,"url":null,"abstract":"<p>We prove that the mapping class group of the one-holed Cantor tree surface is acyclic. This in turn determines the homology of the mapping class group of the once-punctured Cantor tree surface (i.e. the plane minus a Cantor set), in particular answering a recent question of Calegari and Chen. We in fact prove these results for a general class of infinite-type surfaces called binary tree surfaces. To prove our results we use two main ingredients: one is a modification of an argument of Mather related to the notion of <i>dissipated groups</i>; the other is a general homological stability result for mapping class groups of infinite-type surfaces.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 4","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12358","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12358","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We prove that the mapping class group of the one-holed Cantor tree surface is acyclic. This in turn determines the homology of the mapping class group of the once-punctured Cantor tree surface (i.e. the plane minus a Cantor set), in particular answering a recent question of Calegari and Chen. We in fact prove these results for a general class of infinite-type surfaces called binary tree surfaces. To prove our results we use two main ingredients: one is a modification of an argument of Mather related to the notion of dissipated groups; the other is a general homological stability result for mapping class groups of infinite-type surfaces.
期刊介绍:
The Journal of Topology publishes papers of high quality and significance in topology, geometry and adjacent areas of mathematics. Interesting, important and often unexpected links connect topology and geometry with many other parts of mathematics, and the editors welcome submissions on exciting new advances concerning such links, as well as those in the core subject areas of the journal.
The Journal of Topology was founded in 2008. It is published quarterly with articles published individually online prior to appearing in a printed issue.