Stated SL( n $n$ )-skein modules and algebras

Pub Date : 2024-08-21 DOI:10.1112/topo.12350
Thang T. Q. Lê, Adam S. Sikora
{"title":"Stated SL(\n \n n\n $n$\n )-skein modules and algebras","authors":"Thang T. Q. Lê,&nbsp;Adam S. Sikora","doi":"10.1112/topo.12350","DOIUrl":null,"url":null,"abstract":"<p>We develop a theory of stated SL(<span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>)-skein modules, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>S</mi>\n <mi>n</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>M</mi>\n <mo>,</mo>\n <mi>N</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {S}_n(M,\\mathcal {N})$</annotation>\n </semantics></math>, of 3-manifolds <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> marked with intervals <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$\\mathcal {N}$</annotation>\n </semantics></math> in their boundaries. These skein modules, generalizing stated SL(2)-modules of the first author, stated SL(3)-modules of Higgins', and SU(n)-skein modules of the second author, consist of linear combinations of framed, oriented graphs, called <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>-webs, with ends in <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$\\mathcal {N}$</annotation>\n </semantics></math>, considered up to skein relations of the <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>U</mi>\n <mi>q</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>s</mi>\n <msub>\n <mi>l</mi>\n <mi>n</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$U_q(sl_n)$</annotation>\n </semantics></math>-Reshetikhin–Turaev functor on tangles, involving coupons representing the anti-symmetrizer and its dual. We prove the Splitting Theorem asserting that cutting of a marked 3-manifold <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> along a disk resulting in a 3-manifold <span></span><math>\n <semantics>\n <msup>\n <mi>M</mi>\n <mo>′</mo>\n </msup>\n <annotation>$M^{\\prime }$</annotation>\n </semantics></math> yields a homomorphism <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>S</mi>\n <mi>n</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>M</mi>\n <mo>)</mo>\n </mrow>\n <mo>→</mo>\n <msub>\n <mi>S</mi>\n <mi>n</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>M</mi>\n <mo>′</mo>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {S}_n(M)\\rightarrow \\mathcal {S}_n(M^{\\prime })$</annotation>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>. That result allows to analyze the skein modules of 3-manifolds through the skein modules of their pieces. The theory of stated skein modules is particularly rich for thickened surfaces <span></span><math>\n <semantics>\n <mrow>\n <mi>M</mi>\n <mo>=</mo>\n <mi>Σ</mi>\n <mo>×</mo>\n <mo>(</mo>\n <mo>−</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$M=\\Sigma \\times (-1,1)$</annotation>\n </semantics></math>, in whose case, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>S</mi>\n <mi>n</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>M</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {S}_n(M)$</annotation>\n </semantics></math> is an algebra, denoted by <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>S</mi>\n <mi>n</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>Σ</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {S}_n(\\Sigma)$</annotation>\n </semantics></math>. One of the main results of this paper asserts that the skein algebra of the ideal bigon is isomorphic with <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>O</mi>\n <mi>q</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>S</mi>\n <mi>L</mi>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {O}_q(SL(n))$</annotation>\n </semantics></math> and it provides simple geometric interpretations of the product, coproduct, counit, the antipode, and the cobraided structure on <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>O</mi>\n <mi>q</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>S</mi>\n <mi>L</mi>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {O}_q(SL(n))$</annotation>\n </semantics></math>. (In particular, the coproduct is given by a splitting homomorphism.) We show that for surfaces with boundary <span></span><math>\n <semantics>\n <mi>Σ</mi>\n <annotation>$\\Sigma$</annotation>\n </semantics></math> every splitting homomorphism is injective and that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>S</mi>\n <mi>n</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>Σ</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {S}_n(\\Sigma)$</annotation>\n </semantics></math> is a free module with a basis induced from the Kashiwara–Lusztig canonical bases. Additionally, we show that a splitting of a thickened bigon near a marking defines a right <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>O</mi>\n <mi>q</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>S</mi>\n <mi>L</mi>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {O}_q(SL(n))$</annotation>\n </semantics></math>-comodule structure on <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>S</mi>\n <mi>n</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>M</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {S}_n(M)$</annotation>\n </semantics></math>, or dually, a left <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>U</mi>\n <mi>q</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>s</mi>\n <msub>\n <mi>l</mi>\n <mi>n</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$U_q(sl_n)$</annotation>\n </semantics></math>-module structure. Furthermore, we show that the skein algebra of surfaces <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Σ</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>Σ</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>$\\Sigma _1, \\Sigma _2$</annotation>\n </semantics></math> glued along two sides of a triangle is isomorphic with the braided tensor product <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>S</mi>\n <mi>n</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>Σ</mi>\n <mn>1</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <munder>\n <mo>⊗</mo>\n <mo>̲</mo>\n </munder>\n <msub>\n <mi>S</mi>\n <mi>n</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>Σ</mi>\n <mn>2</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {S}_n(\\Sigma _1){\\underline{\\otimes }}\\mathcal {S}_n(\\Sigma _2)$</annotation>\n </semantics></math> of Majid. These results allow for geometric interpretation of further concepts in the theory of quantum groups, for example, of the braided products and of Majid's transmutation operation. Building upon the above results, we prove that the factorization homology with coefficients in the category of representations of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>U</mi>\n <mi>q</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>s</mi>\n <msub>\n <mi>l</mi>\n <mi>n</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$U_q(sl_n)$</annotation>\n </semantics></math> is equivalent to the category of left modules over <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>S</mi>\n <mi>n</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>Σ</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {S}_n(\\Sigma)$</annotation>\n </semantics></math> for surfaces <span></span><math>\n <semantics>\n <mi>Σ</mi>\n <annotation>$\\Sigma$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mi>∂</mi>\n <mi>Σ</mi>\n <mo>=</mo>\n <msup>\n <mi>S</mi>\n <mn>1</mn>\n </msup>\n </mrow>\n <annotation>$\\partial \\Sigma =S^1$</annotation>\n </semantics></math>. We also establish isomorphisms of our skein algebras with the quantum moduli spaces of Alekseev–Schomerus and with the internal algebras of the skein categories for these surfaces and <span></span><math>\n <semantics>\n <mrow>\n <mi>g</mi>\n <mo>=</mo>\n <mi>s</mi>\n <mi>l</mi>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathfrak {g}=sl(n)$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We develop a theory of stated SL( n $n$ )-skein modules, S n ( M , N ) $\mathcal {S}_n(M,\mathcal {N})$ , of 3-manifolds M $M$ marked with intervals N $\mathcal {N}$ in their boundaries. These skein modules, generalizing stated SL(2)-modules of the first author, stated SL(3)-modules of Higgins', and SU(n)-skein modules of the second author, consist of linear combinations of framed, oriented graphs, called n $n$ -webs, with ends in N $\mathcal {N}$ , considered up to skein relations of the U q ( s l n ) $U_q(sl_n)$ -Reshetikhin–Turaev functor on tangles, involving coupons representing the anti-symmetrizer and its dual. We prove the Splitting Theorem asserting that cutting of a marked 3-manifold M $M$ along a disk resulting in a 3-manifold M $M^{\prime }$ yields a homomorphism S n ( M ) S n ( M ) $\mathcal {S}_n(M)\rightarrow \mathcal {S}_n(M^{\prime })$ for all n $n$ . That result allows to analyze the skein modules of 3-manifolds through the skein modules of their pieces. The theory of stated skein modules is particularly rich for thickened surfaces M = Σ × ( 1 , 1 ) $M=\Sigma \times (-1,1)$ , in whose case, S n ( M ) $\mathcal {S}_n(M)$ is an algebra, denoted by S n ( Σ ) $\mathcal {S}_n(\Sigma)$ . One of the main results of this paper asserts that the skein algebra of the ideal bigon is isomorphic with O q ( S L ( n ) ) $\mathcal {O}_q(SL(n))$ and it provides simple geometric interpretations of the product, coproduct, counit, the antipode, and the cobraided structure on O q ( S L ( n ) ) $\mathcal {O}_q(SL(n))$ . (In particular, the coproduct is given by a splitting homomorphism.) We show that for surfaces with boundary Σ $\Sigma$ every splitting homomorphism is injective and that S n ( Σ ) $\mathcal {S}_n(\Sigma)$ is a free module with a basis induced from the Kashiwara–Lusztig canonical bases. Additionally, we show that a splitting of a thickened bigon near a marking defines a right O q ( S L ( n ) ) $\mathcal {O}_q(SL(n))$ -comodule structure on S n ( M ) $\mathcal {S}_n(M)$ , or dually, a left U q ( s l n ) $U_q(sl_n)$ -module structure. Furthermore, we show that the skein algebra of surfaces Σ 1 , Σ 2 $\Sigma _1, \Sigma _2$ glued along two sides of a triangle is isomorphic with the braided tensor product S n ( Σ 1 ) ̲ S n ( Σ 2 ) $\mathcal {S}_n(\Sigma _1){\underline{\otimes }}\mathcal {S}_n(\Sigma _2)$ of Majid. These results allow for geometric interpretation of further concepts in the theory of quantum groups, for example, of the braided products and of Majid's transmutation operation. Building upon the above results, we prove that the factorization homology with coefficients in the category of representations of U q ( s l n ) $U_q(sl_n)$ is equivalent to the category of left modules over S n ( Σ ) $\mathcal {S}_n(\Sigma)$ for surfaces Σ $\Sigma$ with Σ = S 1 $\partial \Sigma =S^1$ . We also establish isomorphisms of our skein algebras with the quantum moduli spaces of Alekseev–Schomerus and with the internal algebras of the skein categories for these surfaces and g = s l ( n ) $\mathfrak {g}=sl(n)$ .

分享
查看原文
陈述的 SL( n $n$ )-斯琴模块和代数
我们发展了一种在其边界上标有区间 N $\mathcal {N}$ 的 3 维网格 M $M$ 的陈述 SL( n $n$ )-skein 模块 S n ( M , N ) $\mathcal {S}_n(M,\mathcal {N})$ 的理论。这些绺裂模块概括了第一作者的陈述SL(2)模块、希金斯的陈述SL(3)模块和第二作者的SU(n)绺裂模块,由有框定向图的线性组合组成,称为n $n$ 网,其末端位于N $\mathcal {N}$、考虑到缠结上的 U q ( s l n ) $U_q(sl_n)$ -Reshetikhin-Turaev 因子的绺关系,涉及代表反对称器及其对偶的券。我们证明了 "分割定理"(Splitting Theorem),该定理断言沿着一个圆盘切割一个有标记的 3-manifold M $M$,会产生一个同构 S n ( M ) → S n ( M ′ ) $\mathcal {S}_n(M)\rightarrow \mathcal {S}_n(M^{\prime })$ 对于所有 n $n $。这一结果使得我们可以通过3-manifolds碎片的绺裂模块来分析3-manifolds的绺裂模块。对于加厚曲面 M = Σ × ( - 1 , 1 ) $M=\Sigma \times (-1,1)$ 而言,所述矢量模块的理论尤其丰富,在这种情况下,S n ( M ) $\mathcal {S}_n(M)$ 是一个代数,用 S n ( Σ ) $\mathcal {S}_n(\Sigma)$ 表示。本文的主要结果之一是断言理想 bigon 的矢量代数与 O q ( S L ( n ) ) $\mathcal {O}_q(SL(n))$ 同构,并对 O q ( S L ( n ) ) $\mathcal {O}_q(SL(n))$ 上的乘积、共乘积、矢量、反节点和眼镜蛇结构提供了简单的几何解释(特别是,共乘积是由分裂同态给出的)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信