{"title":"Equivariant Lagrangian Floer homology via cotangent bundles of \u0000 \u0000 \u0000 E\u0000 \u0000 G\u0000 N\u0000 \u0000 \u0000 $EG_N$","authors":"Guillem Cazassus","doi":"10.1112/topo.12328","DOIUrl":"https://doi.org/10.1112/topo.12328","url":null,"abstract":"<p>We provide a construction of equivariant Lagrangian Floer homology <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>H</mi>\u0000 <msub>\u0000 <mi>F</mi>\u0000 <mi>G</mi>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msub>\u0000 <mi>L</mi>\u0000 <mn>0</mn>\u0000 </msub>\u0000 <mo>,</mo>\u0000 <msub>\u0000 <mi>L</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$HF_G(L_0, L_1)$</annotation>\u0000 </semantics></math>, for a compact Lie group <math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math> acting on a symplectic manifold <math>\u0000 <semantics>\u0000 <mi>M</mi>\u0000 <annotation>$M$</annotation>\u0000 </semantics></math> in a Hamiltonian fashion, and a pair of <math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math>-Lagrangian submanifolds <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>L</mi>\u0000 <mn>0</mn>\u0000 </msub>\u0000 <mo>,</mo>\u0000 <msub>\u0000 <mi>L</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <mo>⊂</mo>\u0000 <mi>M</mi>\u0000 </mrow>\u0000 <annotation>$L_0, L_1 subset M$</annotation>\u0000 </semantics></math>. We do so by using symplectic homotopy quotients involving cotangent bundles of an approximation of <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>E</mi>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation>$EG$</annotation>\u0000 </semantics></math>. Our construction relies on Wehrheim and Woodward's theory of quilts, and the telescope construction. We show that these groups are independent of the auxiliary choices involved in their construction, and are <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>H</mi>\u0000 <mo>∗</mo>\u0000 </msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>B</mi>\u0000 <mi>G</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$H^*(BG)$</annotation>\u0000 </semantics></math>-bimodules. In the case w","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12328","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140114186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}