{"title":"Almost strict domination and anti-de Sitter 3-manifolds","authors":"Nathaniel Sagman","doi":"10.1112/topo.12323","DOIUrl":"https://doi.org/10.1112/topo.12323","url":null,"abstract":"<p>We define a condition called almost strict domination for pairs of representations <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>ρ</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <mo>:</mo>\u0000 <msub>\u0000 <mi>π</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msub>\u0000 <mi>S</mi>\u0000 <mrow>\u0000 <mi>g</mi>\u0000 <mo>,</mo>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 </msub>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo>→</mo>\u0000 <mi>PSL</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mn>2</mn>\u0000 <mo>,</mo>\u0000 <mi>R</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$rho _1:pi _1(S_{g,n})rightarrow textrm {PSL}(2,mathbb {R})$</annotation>\u0000 </semantics></math>, <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>ρ</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 <mo>:</mo>\u0000 <msub>\u0000 <mi>π</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msub>\u0000 <mi>S</mi>\u0000 <mrow>\u0000 <mi>g</mi>\u0000 <mo>,</mo>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 </msub>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo>→</mo>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation>$rho _2:pi _1(S_{g,n})rightarrow G$</annotation>\u0000 </semantics></math>, where <math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math> is the isometry group of a Hadamard manifold, and prove that it holds if and only if one can find a <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msub>\u0000 <mi>ρ</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <mo>,</mo>\u0000 <msub>\u0000 <mi>ρ</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(rho _1,rho _2)$</annotation>\u0000 </semantics></math>-equivariant spacelike maximal surface in a certain pseudo-Riemannian manifold, unique up to fixing some parameters. The proof amounts to setting up and solving an interesting variati","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139655309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Algebraic theories of power operations","authors":"William Balderrama","doi":"10.1112/topo.12318","DOIUrl":"https://doi.org/10.1112/topo.12318","url":null,"abstract":"<p>We develop and exposit some general algebra useful for working with certain algebraic structures that arise in stable homotopy theory, such as those encoding well-behaved theories of power operations for <math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>E</mi>\u0000 <mi>∞</mi>\u0000 </msub>\u0000 <annotation>$mathbb {E}_infty$</annotation>\u0000 </semantics></math> ring spectra. In particular, we consider Quillen cohomology in the context of algebras over algebraic theories, plethories, and Koszul resolutions for algebras over additive theories. By combining this general algebra with obstruction-theoretic machinery, we obtain tools for computing with <math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>E</mi>\u0000 <mi>∞</mi>\u0000 </msub>\u0000 <annotation>$mathbb {E}_infty$</annotation>\u0000 </semantics></math> algebras over <math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>F</mi>\u0000 <mi>p</mi>\u0000 </msub>\u0000 <annotation>$mathbb {F}_p$</annotation>\u0000 </semantics></math> and over Lubin–Tate spectra. As an application, we demonstrate the existence of <math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>E</mi>\u0000 <mi>∞</mi>\u0000 </msub>\u0000 <annotation>$mathbb {E}_infty$</annotation>\u0000 </semantics></math> periodic complex orientations at heights <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>h</mi>\u0000 <mo>⩽</mo>\u0000 <mn>2</mn>\u0000 </mrow>\u0000 <annotation>$hleqslant 2$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12318","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138485142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Trace embeddings from zero surgery homeomorphisms","authors":"Kai Nakamura","doi":"10.1112/topo.12319","DOIUrl":"https://doi.org/10.1112/topo.12319","url":null,"abstract":"<p>Manolescu and Piccirillo (2023) recently initiated a program to construct an exotic <math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>S</mi>\u0000 <mn>4</mn>\u0000 </msup>\u0000 <annotation>$S^4$</annotation>\u0000 </semantics></math> or <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>#</mo>\u0000 <mi>n</mi>\u0000 <msup>\u0000 <mi>CP</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$# n mathbb {CP}^2$</annotation>\u0000 </semantics></math> by using zero surgery homeomorphisms and Rasmussen's <math>\u0000 <semantics>\u0000 <mi>s</mi>\u0000 <annotation>$s$</annotation>\u0000 </semantics></math>-invariant. They find five knots that if any were slice, one could construct an exotic <math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>S</mi>\u0000 <mn>4</mn>\u0000 </msup>\u0000 <annotation>$S^4$</annotation>\u0000 </semantics></math> and disprove the Smooth 4-dimensional Poincaré conjecture. We rule out this exciting possibility and show that these knots are not slice. To do this, we use a zero surgery homeomorphism to relate slice properties of two knots <i>stably</i> after a connected sum with some 4-manifold. Furthermore, we show that our techniques will extend to the entire infinite family of zero surgery homeomorphisms constructed by Manolescu and Piccirillo. However, our methods do not completely rule out the possibility of constructing an exotic <math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>S</mi>\u0000 <mn>4</mn>\u0000 </msup>\u0000 <annotation>$S^4$</annotation>\u0000 </semantics></math> or <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>#</mo>\u0000 <mi>n</mi>\u0000 <msup>\u0000 <mi>CP</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$# n mathbb {CP}^2$</annotation>\u0000 </semantics></math> as Manolescu and Piccirillo proposed. We explain the limits of these methods hoping this will inform and invite new attempts to construct an exotic <math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>S</mi>\u0000 <mn>4</mn>\u0000 </msup>\u0000 <annotation>$S^4$</annotation>\u0000 </semantics></math> or <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>#</mo>\u0000 <mi>n</mi>\u0000 <msup>\u0000 <mi>CP</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$# n mathbb {CP}^2$</annotation>\u0000 </semantics></math>. We also show that a family of homotopy spheres constructed by Manolescu and Picc","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138485143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A lower bound in the problem of realization of cycles","authors":"Vasilii Rozhdestvenskii","doi":"10.1112/topo.12320","DOIUrl":"https://doi.org/10.1112/topo.12320","url":null,"abstract":"<p>We consider the classical Steenrod problem on realization of integral homology classes by continuous images of smooth oriented manifolds. Let <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 <mo>(</mo>\u0000 <mi>n</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$k(n)$</annotation>\u0000 </semantics></math> be the smallest positive integer such that any integral <math>\u0000 <semantics>\u0000 <mi>n</mi>\u0000 <annotation>$n$</annotation>\u0000 </semantics></math>-dimensional homology class becomes realizable in the sense of Steenrod after multiplication by <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 <mo>(</mo>\u0000 <mi>n</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$k(n)$</annotation>\u0000 </semantics></math>. The best known upper bound for <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 <mo>(</mo>\u0000 <mi>n</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$k(n)$</annotation>\u0000 </semantics></math> was obtained independently by Brumfiel and Buchstaber in 1969. All known lower bounds for <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 <mo>(</mo>\u0000 <mi>n</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$k(n)$</annotation>\u0000 </semantics></math> were very far from this upper bound. The main result of this paper is a new lower bound for <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 <mo>(</mo>\u0000 <mi>n</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$k(n)$</annotation>\u0000 </semantics></math> that is asymptotically equivalent to the Brumfiel–Buchstaber upper bound (in the logarithmic scale). For <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo><</mo>\u0000 <mn>24</mn>\u0000 </mrow>\u0000 <annotation>$n<24$</annotation>\u0000 </semantics></math>, we prove that our lower bound is exact. Also, we obtain analogous results for the case of realization of integral homology classes by continuous images of smooth stably complex manifolds.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138454698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Elliptic bihamiltonian structures from relative shifted Poisson structures","authors":"Zheng Hua, Alexander Polishchuk","doi":"10.1112/topo.12315","DOIUrl":"https://doi.org/10.1112/topo.12315","url":null,"abstract":"<p>In this paper, generalizing our previous construction, we equip the relative moduli stack of complexes over a Calabi–Yau fibration (possibly with singular fibers) with a shifted Poisson structure. Applying this construction to the anticanonical linear systems on surfaces, we get examples of compatible Poisson brackets on projective spaces extending Feigin–Odesskii Poisson brackets. Computing explicitly the corresponding compatible brackets coming from Hirzebruch surfaces, we recover the brackets defined by Odesskii–Wolf.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138431991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A new approach to twisted homological stability with applications to congruence subgroups","authors":"Andrew Putman","doi":"10.1112/topo.12316","DOIUrl":"https://doi.org/10.1112/topo.12316","url":null,"abstract":"<p>We introduce a new method for proving twisted homological stability, and use it to prove such results for symmetric groups and general linear groups. In addition to sometimes slightly improving the stable range given by the traditional method (due to Dwyer), it is easier to adapt to nonstandard situations. As an illustration of this, we generalize to <math>\u0000 <semantics>\u0000 <msub>\u0000 <mo>GL</mo>\u0000 <mi>n</mi>\u0000 </msub>\u0000 <annotation>$operatorname{GL}_n$</annotation>\u0000 </semantics></math> of many rings <math>\u0000 <semantics>\u0000 <mi>R</mi>\u0000 <annotation>$R$</annotation>\u0000 </semantics></math> a theorem of Borel that says that passing from <math>\u0000 <semantics>\u0000 <msub>\u0000 <mo>GL</mo>\u0000 <mi>n</mi>\u0000 </msub>\u0000 <annotation>$operatorname{GL}_n$</annotation>\u0000 </semantics></math> of a number ring to a finite-index subgroup does not change the rational cohomology. Charney proved this generalization for trivial coefficients, and we extend it to twisted coefficients.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138432408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Motivic Pontryagin classes and hyperbolic orientations","authors":"Olivier Haution","doi":"10.1112/topo.12317","DOIUrl":"https://doi.org/10.1112/topo.12317","url":null,"abstract":"<p>We introduce the notion of hyperbolic orientation of a motivic ring spectrum, which generalises the various existing notions of orientation (by the groups <math>\u0000 <semantics>\u0000 <mo>GL</mo>\u0000 <annotation>$operatorname{GL}$</annotation>\u0000 </semantics></math>, <math>\u0000 <semantics>\u0000 <msup>\u0000 <mo>SL</mo>\u0000 <mi>c</mi>\u0000 </msup>\u0000 <annotation>$operatorname{SL}^c$</annotation>\u0000 </semantics></math>, <math>\u0000 <semantics>\u0000 <mo>SL</mo>\u0000 <annotation>$operatorname{SL}$</annotation>\u0000 </semantics></math>, <math>\u0000 <semantics>\u0000 <mo>Sp</mo>\u0000 <annotation>$operatorname{Sp}$</annotation>\u0000 </semantics></math>). We show that hyperbolic orientations of <math>\u0000 <semantics>\u0000 <mi>η</mi>\u0000 <annotation>$eta$</annotation>\u0000 </semantics></math>-periodic ring spectra correspond to theories of Pontryagin classes, much in the same way that <math>\u0000 <semantics>\u0000 <mo>GL</mo>\u0000 <annotation>$operatorname{GL}$</annotation>\u0000 </semantics></math>-orientations of arbitrary ring spectra correspond to theories of Chern classes. We prove that <math>\u0000 <semantics>\u0000 <mi>η</mi>\u0000 <annotation>$eta$</annotation>\u0000 </semantics></math>-periodic hyperbolically oriented cohomology theories do not admit further characteristic classes for vector bundles, by computing the cohomology of the étale classifying space <math>\u0000 <semantics>\u0000 <msub>\u0000 <mo>BGL</mo>\u0000 <mi>n</mi>\u0000 </msub>\u0000 <annotation>$operatorname{BGL}_n$</annotation>\u0000 </semantics></math>. Finally, we construct the universal hyperbolically oriented <math>\u0000 <semantics>\u0000 <mi>η</mi>\u0000 <annotation>$eta$</annotation>\u0000 </semantics></math>-periodic commutative motivic ring spectrum, an analogue of Voevodsky's cobordism spectrum <math>\u0000 <semantics>\u0000 <mo>MGL</mo>\u0000 <annotation>$operatorname{MGL}$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12317","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138432411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the motivic Segal conjecture","authors":"Thomas Gregersen, John Rognes","doi":"10.1112/topo.12311","DOIUrl":"10.1112/topo.12311","url":null,"abstract":"<p>We establish motivic versions of the theorems of Lin and Gunawardena, thereby confirming the motivic Segal conjecture for the algebraic group <math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>μ</mi>\u0000 <mi>ℓ</mi>\u0000 </msub>\u0000 <annotation>$mu _ell$</annotation>\u0000 </semantics></math> of <math>\u0000 <semantics>\u0000 <mi>ℓ</mi>\u0000 <annotation>$ell$</annotation>\u0000 </semantics></math>th roots of unity, where <math>\u0000 <semantics>\u0000 <mi>ℓ</mi>\u0000 <annotation>$ell$</annotation>\u0000 </semantics></math> is any prime. To achieve this we develop motivic Singer constructions associated to the symmetric group <math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>S</mi>\u0000 <mi>ℓ</mi>\u0000 </msub>\u0000 <annotation>$S_ell$</annotation>\u0000 </semantics></math> and to <math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>μ</mi>\u0000 <mi>ℓ</mi>\u0000 </msub>\u0000 <annotation>$mu _ell$</annotation>\u0000 </semantics></math>, and introduce a delayed limit Adams spectral sequence.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12311","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45024268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Homotopy of manifolds stabilized by projective spaces","authors":"Ruizhi Huang, Stephen Theriault","doi":"10.1112/topo.12313","DOIUrl":"10.1112/topo.12313","url":null,"abstract":"<p>We study the homotopy of the connected sum of a manifold with a projective space, viewed as a typical way to stabilize manifolds. In particular, we show a loop homotopy decomposition of a manifold after stabilization by a projective space, and provide concrete examples. To do this, we trace the effect in homotopy theory of surgery on certain product manifolds by showing a loop homotopy decomposition after localization away from the order of the image of the classical <math>\u0000 <semantics>\u0000 <mi>J</mi>\u0000 <annotation>$J$</annotation>\u0000 </semantics></math>-homomorphism.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12313","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48207005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}