{"title":"Knotted families from graspers","authors":"Danica Kosanović","doi":"10.1112/topo.12337","DOIUrl":"https://doi.org/10.1112/topo.12337","url":null,"abstract":"<p>For any smooth manifold <span></span><math>\u0000 <semantics>\u0000 <mi>M</mi>\u0000 <annotation>$M$</annotation>\u0000 </semantics></math> of dimension <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>d</mi>\u0000 <mo>⩾</mo>\u0000 <mn>4</mn>\u0000 </mrow>\u0000 <annotation>$dgeqslant 4$</annotation>\u0000 </semantics></math>, we construct explicit classes in homotopy groups of spaces of embeddings of either an arc or a circle into <span></span><math>\u0000 <semantics>\u0000 <mi>M</mi>\u0000 <annotation>$M$</annotation>\u0000 </semantics></math>, in every degree that is a multiple of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>d</mi>\u0000 <mo>−</mo>\u0000 <mn>3</mn>\u0000 </mrow>\u0000 <annotation>$d-3$</annotation>\u0000 </semantics></math>, and show that they are detected in the Taylor tower of Goodwillie and Weiss. The classes are obtained from families of string links constructed in the <span></span><math>\u0000 <semantics>\u0000 <mi>d</mi>\u0000 <annotation>$d$</annotation>\u0000 </semantics></math>-ball.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 2","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12337","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140902759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Picard sheaves, local Brauer groups, and topological modular forms","authors":"Benjamin Antieau, Lennart Meier, Vesna Stojanoska","doi":"10.1112/topo.12333","DOIUrl":"https://doi.org/10.1112/topo.12333","url":null,"abstract":"<p>We develop tools to analyze and compare the Brauer groups of spectra such as periodic complex and real <span></span><math>\u0000 <semantics>\u0000 <mi>K</mi>\u0000 <annotation>$K$</annotation>\u0000 </semantics></math>-theory and topological modular forms, as well as the derived moduli stack of elliptic curves. In particular, we prove that the Brauer group of <span></span><math>\u0000 <semantics>\u0000 <mi>TMF</mi>\u0000 <annotation>$mathrm{TMF}$</annotation>\u0000 </semantics></math> is isomorphic to the Brauer group of the derived moduli stack of elliptic curves. Our main computational focus is on the subgroup of the Brauer group consisting of elements trivialized by some étale extension, which we call the local Brauer group. Essential information about this group can be accessed by a thorough understanding of the Picard sheaf and its cohomology. We deduce enough information about the Picard sheaf of <span></span><math>\u0000 <semantics>\u0000 <mi>TMF</mi>\u0000 <annotation>$mathrm{TMF}$</annotation>\u0000 </semantics></math> and the (derived) moduli stack of elliptic curves to determine the structure of their local Brauer groups away from the prime 2. At 2, we show that they are both infinitely generated and agree up to a potential error term that is a finite 2-torsion group.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 2","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12333","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140844924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Convex co-compact representations of 3-manifold groups","authors":"Mitul Islam, Andrew Zimmer","doi":"10.1112/topo.12332","DOIUrl":"https://doi.org/10.1112/topo.12332","url":null,"abstract":"<p>A representation of a finitely generated group into the projective general linear group is called convex co-compact if it has finite kernel and its image acts convex co-compactly on a properly convex domain in real projective space. We prove that the fundamental group of a closed irreducible orientable 3-manifold can admit such a representation only when the manifold is geometric (with Euclidean, Hyperbolic or Euclidean <span></span><math>\u0000 <semantics>\u0000 <mo>×</mo>\u0000 <annotation>$times$</annotation>\u0000 </semantics></math> Hyperbolic geometry) or when every component in the geometric decomposition is hyperbolic. In each case, we describe the structure of such examples.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 2","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12332","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140818858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Koszul self-duality of manifolds","authors":"Connor Malin","doi":"10.1112/topo.12334","DOIUrl":"https://doi.org/10.1112/topo.12334","url":null,"abstract":"<p>We show that Koszul duality for operads in <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>Top</mi>\u0000 <mo>,</mo>\u0000 <mo>×</mo>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(mathrm{Top},times)$</annotation>\u0000 </semantics></math> can be expressed via generalized Thom complexes. As an application, we prove the Koszul self-duality of the right module <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>E</mi>\u0000 <mi>M</mi>\u0000 </msub>\u0000 <annotation>$E_M$</annotation>\u0000 </semantics></math> associated to a framed manifold <span></span><math>\u0000 <semantics>\u0000 <mi>M</mi>\u0000 <annotation>$M$</annotation>\u0000 </semantics></math>. We discuss implications for factorization homology, embedding calculus, and confirm an old conjecture of Ching on the relation of Goodwillie calculus to manifold calculus.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 2","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140808033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Brane structures in microlocal sheaf theory","authors":"Xin Jin, David Treumann","doi":"10.1112/topo.12325","DOIUrl":"10.1112/topo.12325","url":null,"abstract":"<p>Let <math>\u0000 <semantics>\u0000 <mi>L</mi>\u0000 <annotation>$L$</annotation>\u0000 </semantics></math> be an exact Lagrangian submanifold of a cotangent bundle <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>T</mi>\u0000 <mo>∗</mo>\u0000 </msup>\u0000 <mi>M</mi>\u0000 </mrow>\u0000 <annotation>$T^* M$</annotation>\u0000 </semantics></math>, asymptotic to a Legendrian submanifold <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Λ</mi>\u0000 <mo>⊂</mo>\u0000 <msup>\u0000 <mi>T</mi>\u0000 <mi>∞</mi>\u0000 </msup>\u0000 <mi>M</mi>\u0000 </mrow>\u0000 <annotation>$Lambda subset T^{infty } M$</annotation>\u0000 </semantics></math>. We study a locally constant sheaf of <math>\u0000 <semantics>\u0000 <mi>∞</mi>\u0000 <annotation>$infty$</annotation>\u0000 </semantics></math>-categories on <math>\u0000 <semantics>\u0000 <mi>L</mi>\u0000 <annotation>$L$</annotation>\u0000 </semantics></math>, called the sheaf of brane structures or <math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>Brane</mi>\u0000 <mi>L</mi>\u0000 </msub>\u0000 <annotation>$mathrm{Brane}_L$</annotation>\u0000 </semantics></math>. Its fiber is the <math>\u0000 <semantics>\u0000 <mi>∞</mi>\u0000 <annotation>$infty$</annotation>\u0000 </semantics></math>-category of spectra, and we construct a Hamiltonian invariant, fully faithful functor from <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Γ</mi>\u0000 <mo>(</mo>\u0000 <mi>L</mi>\u0000 <mo>,</mo>\u0000 <msub>\u0000 <mi>Brane</mi>\u0000 <mi>L</mi>\u0000 </msub>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$Gamma (L,mathrm{Brane}_L)$</annotation>\u0000 </semantics></math> to the <math>\u0000 <semantics>\u0000 <mi>∞</mi>\u0000 <annotation>$infty$</annotation>\u0000 </semantics></math>-category of sheaves of spectra on <math>\u0000 <semantics>\u0000 <mi>M</mi>\u0000 <annotation>$M$</annotation>\u0000 </semantics></math> with singular support in <math>\u0000 <semantics>\u0000 <mi>Λ</mi>\u0000 <annotation>$Lambda$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12325","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140124243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Equivariant Lagrangian Floer homology via cotangent bundles of \u0000 \u0000 \u0000 E\u0000 \u0000 G\u0000 N\u0000 \u0000 \u0000 $EG_N$","authors":"Guillem Cazassus","doi":"10.1112/topo.12328","DOIUrl":"https://doi.org/10.1112/topo.12328","url":null,"abstract":"<p>We provide a construction of equivariant Lagrangian Floer homology <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>H</mi>\u0000 <msub>\u0000 <mi>F</mi>\u0000 <mi>G</mi>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msub>\u0000 <mi>L</mi>\u0000 <mn>0</mn>\u0000 </msub>\u0000 <mo>,</mo>\u0000 <msub>\u0000 <mi>L</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$HF_G(L_0, L_1)$</annotation>\u0000 </semantics></math>, for a compact Lie group <math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math> acting on a symplectic manifold <math>\u0000 <semantics>\u0000 <mi>M</mi>\u0000 <annotation>$M$</annotation>\u0000 </semantics></math> in a Hamiltonian fashion, and a pair of <math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math>-Lagrangian submanifolds <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>L</mi>\u0000 <mn>0</mn>\u0000 </msub>\u0000 <mo>,</mo>\u0000 <msub>\u0000 <mi>L</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <mo>⊂</mo>\u0000 <mi>M</mi>\u0000 </mrow>\u0000 <annotation>$L_0, L_1 subset M$</annotation>\u0000 </semantics></math>. We do so by using symplectic homotopy quotients involving cotangent bundles of an approximation of <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>E</mi>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation>$EG$</annotation>\u0000 </semantics></math>. Our construction relies on Wehrheim and Woodward's theory of quilts, and the telescope construction. We show that these groups are independent of the auxiliary choices involved in their construction, and are <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>H</mi>\u0000 <mo>∗</mo>\u0000 </msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>B</mi>\u0000 <mi>G</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$H^*(BG)$</annotation>\u0000 </semantics></math>-bimodules. In the case w","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12328","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140114186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}