{"title":"Invertible topological field theories","authors":"Christopher Schommer-Pries","doi":"10.1112/topo.12335","DOIUrl":null,"url":null,"abstract":"<p>A <span></span><math>\n <semantics>\n <mi>d</mi>\n <annotation>$d$</annotation>\n </semantics></math>-dimensional invertible topological field theory (TFT) is a functor from the symmetric monoidal <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>∞</mi>\n <mo>,</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\infty,n)$</annotation>\n </semantics></math>-category of <span></span><math>\n <semantics>\n <mi>d</mi>\n <annotation>$d$</annotation>\n </semantics></math>-bordisms (embedded into <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>∞</mi>\n </msup>\n <annotation>$\\mathbb {R}^\\infty$</annotation>\n </semantics></math> and equipped with a tangential <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>,</mo>\n <mi>ξ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(X,\\xi)$</annotation>\n </semantics></math>-structure) that lands in the Picard subcategory of the target symmetric monoidal <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>∞</mi>\n <mo>,</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\infty,n)$</annotation>\n </semantics></math>-category. We classify these field theories in terms of the cohomology of the <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>−</mo>\n <mi>d</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(n-d)$</annotation>\n </semantics></math>-connective cover of the Madsen–Tillmann spectrum. This is accomplished by identifying the classifying space of the <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>∞</mi>\n <mo>,</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\infty,n)$</annotation>\n </semantics></math>-category of bordisms with <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>Ω</mi>\n <mrow>\n <mi>∞</mi>\n <mo>−</mo>\n <mi>n</mi>\n </mrow>\n </msup>\n <mi>M</mi>\n <mi>T</mi>\n <mi>ξ</mi>\n </mrow>\n <annotation>$\\Omega ^{\\infty -n}MT\\xi$</annotation>\n </semantics></math> as an <span></span><math>\n <semantics>\n <msub>\n <mi>E</mi>\n <mi>∞</mi>\n </msub>\n <annotation>$E_\\infty$</annotation>\n </semantics></math>-space. This generalizes the celebrated result of Galatius–Madsen–Tillmann–Weiss (Acta Math. <b>202</b> (2009), no. 2, 195–239) in the case <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$n=1$</annotation>\n </semantics></math>, and of Bökstedt–Madsen (An alpine expedition through algebraic topology, vol. 617, Contemp. Math., Amer. Math. Soc., Providence, RI, 2014, pp. 39–80) in the <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>-uple case. We also obtain results for the <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>∞</mi>\n <mo>,</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\infty,n)$</annotation>\n </semantics></math>-category of <span></span><math>\n <semantics>\n <mi>d</mi>\n <annotation>$d$</annotation>\n </semantics></math>-bordisms embedding into a fixed ambient manifold <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math>, generalizing results of Randal–Williams (Int. Math. Res. Not. IMRN <b>2011</b> (2011), no. 3, 572–608) in the case <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$n=1$</annotation>\n </semantics></math>. We give two applications: (1) we completely compute all extended and partially extended invertible TFTs with target a certain category of <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>-vector spaces (for <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>⩽</mo>\n <mn>4</mn>\n </mrow>\n <annotation>$n \\leqslant 4$</annotation>\n </semantics></math>), and (2) we use this to give a negative answer to a question raised by Gilmer and Masbaum (Forum Math. <b>25</b> (2013), no. 5, 1067–1106. arXiv:0912.4706).</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A -dimensional invertible topological field theory (TFT) is a functor from the symmetric monoidal -category of -bordisms (embedded into and equipped with a tangential -structure) that lands in the Picard subcategory of the target symmetric monoidal -category. We classify these field theories in terms of the cohomology of the -connective cover of the Madsen–Tillmann spectrum. This is accomplished by identifying the classifying space of the -category of bordisms with as an -space. This generalizes the celebrated result of Galatius–Madsen–Tillmann–Weiss (Acta Math. 202 (2009), no. 2, 195–239) in the case , and of Bökstedt–Madsen (An alpine expedition through algebraic topology, vol. 617, Contemp. Math., Amer. Math. Soc., Providence, RI, 2014, pp. 39–80) in the -uple case. We also obtain results for the -category of -bordisms embedding into a fixed ambient manifold , generalizing results of Randal–Williams (Int. Math. Res. Not. IMRN 2011 (2011), no. 3, 572–608) in the case . We give two applications: (1) we completely compute all extended and partially extended invertible TFTs with target a certain category of -vector spaces (for ), and (2) we use this to give a negative answer to a question raised by Gilmer and Masbaum (Forum Math. 25 (2013), no. 5, 1067–1106. arXiv:0912.4706).