Invertible topological field theories

IF 0.8 2区 数学 Q2 MATHEMATICS
Christopher Schommer-Pries
{"title":"Invertible topological field theories","authors":"Christopher Schommer-Pries","doi":"10.1112/topo.12335","DOIUrl":null,"url":null,"abstract":"<p>A <span></span><math>\n <semantics>\n <mi>d</mi>\n <annotation>$d$</annotation>\n </semantics></math>-dimensional invertible topological field theory (TFT) is a functor from the symmetric monoidal <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>∞</mi>\n <mo>,</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\infty,n)$</annotation>\n </semantics></math>-category of <span></span><math>\n <semantics>\n <mi>d</mi>\n <annotation>$d$</annotation>\n </semantics></math>-bordisms (embedded into <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>∞</mi>\n </msup>\n <annotation>$\\mathbb {R}^\\infty$</annotation>\n </semantics></math> and equipped with a tangential <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>,</mo>\n <mi>ξ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(X,\\xi)$</annotation>\n </semantics></math>-structure) that lands in the Picard subcategory of the target symmetric monoidal <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>∞</mi>\n <mo>,</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\infty,n)$</annotation>\n </semantics></math>-category. We classify these field theories in terms of the cohomology of the <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>−</mo>\n <mi>d</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(n-d)$</annotation>\n </semantics></math>-connective cover of the Madsen–Tillmann spectrum. This is accomplished by identifying the classifying space of the <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>∞</mi>\n <mo>,</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\infty,n)$</annotation>\n </semantics></math>-category of bordisms with <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>Ω</mi>\n <mrow>\n <mi>∞</mi>\n <mo>−</mo>\n <mi>n</mi>\n </mrow>\n </msup>\n <mi>M</mi>\n <mi>T</mi>\n <mi>ξ</mi>\n </mrow>\n <annotation>$\\Omega ^{\\infty -n}MT\\xi$</annotation>\n </semantics></math> as an <span></span><math>\n <semantics>\n <msub>\n <mi>E</mi>\n <mi>∞</mi>\n </msub>\n <annotation>$E_\\infty$</annotation>\n </semantics></math>-space. This generalizes the celebrated result of Galatius–Madsen–Tillmann–Weiss (Acta Math. <b>202</b> (2009), no. 2, 195–239) in the case <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$n=1$</annotation>\n </semantics></math>, and of Bökstedt–Madsen (An alpine expedition through algebraic topology, vol. 617, Contemp. Math., Amer. Math. Soc., Providence, RI, 2014, pp. 39–80) in the <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>-uple case. We also obtain results for the <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>∞</mi>\n <mo>,</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\infty,n)$</annotation>\n </semantics></math>-category of <span></span><math>\n <semantics>\n <mi>d</mi>\n <annotation>$d$</annotation>\n </semantics></math>-bordisms embedding into a fixed ambient manifold <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math>, generalizing results of Randal–Williams (Int. Math. Res. Not. IMRN <b>2011</b> (2011), no. 3, 572–608) in the case <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$n=1$</annotation>\n </semantics></math>. We give two applications: (1) we completely compute all extended and partially extended invertible TFTs with target a certain category of <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>-vector spaces (for <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>⩽</mo>\n <mn>4</mn>\n </mrow>\n <annotation>$n \\leqslant 4$</annotation>\n </semantics></math>), and (2) we use this to give a negative answer to a question raised by Gilmer and Masbaum (Forum Math. <b>25</b> (2013), no. 5, 1067–1106. arXiv:0912.4706).</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 2","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12335","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A d $d$ -dimensional invertible topological field theory (TFT) is a functor from the symmetric monoidal ( , n ) $(\infty,n)$ -category of d $d$ -bordisms (embedded into R $\mathbb {R}^\infty$ and equipped with a tangential ( X , ξ ) $(X,\xi)$ -structure) that lands in the Picard subcategory of the target symmetric monoidal ( , n ) $(\infty,n)$ -category. We classify these field theories in terms of the cohomology of the ( n d ) $(n-d)$ -connective cover of the Madsen–Tillmann spectrum. This is accomplished by identifying the classifying space of the ( , n ) $(\infty,n)$ -category of bordisms with Ω n M T ξ $\Omega ^{\infty -n}MT\xi$ as an E $E_\infty$ -space. This generalizes the celebrated result of Galatius–Madsen–Tillmann–Weiss (Acta Math. 202 (2009), no. 2, 195–239) in the case n = 1 $n=1$ , and of Bökstedt–Madsen (An alpine expedition through algebraic topology, vol. 617, Contemp. Math., Amer. Math. Soc., Providence, RI, 2014, pp. 39–80) in the n $n$ -uple case. We also obtain results for the ( , n ) $(\infty,n)$ -category of d $d$ -bordisms embedding into a fixed ambient manifold M $M$ , generalizing results of Randal–Williams (Int. Math. Res. Not. IMRN 2011 (2011), no. 3, 572–608) in the case n = 1 $n=1$ . We give two applications: (1) we completely compute all extended and partially extended invertible TFTs with target a certain category of n $n$ -vector spaces (for n 4 $n \leqslant 4$ ), and (2) we use this to give a negative answer to a question raised by Gilmer and Masbaum (Forum Math. 25 (2013), no. 5, 1067–1106. arXiv:0912.4706).

可逆拓扑场论
一个 d $d $ -d 维可逆拓扑场论(TFT)是一个来自对称一元 ( ∞ , n ) $(\infty,n)$ -category of d $d $ -bordisms 的函子(嵌入到 R ∞ $\mathbb {R}^\infty$ 并配备一个切向 ( X 、 ξ ) $(X,\xi)$结构),落在目标对称一元 ( ∞ , n ) $(\infty,n)$类别的皮卡尔子类别中。我们根据马德森-蒂尔曼谱的( n - d ) $(n-d)$-康盖的同调对这些场论进行分类。这是通过将(∞ , n ) $(\infty,n)$ -category of bordisms 的分类空间与 Ω ∞ - n M T ξ $\Omega ^{\infty -n}MT\xi$ 识别为 E ∞ $E_\infty$ -space 来实现的。这概括了加拉蒂乌斯-马德森-蒂尔曼-魏斯的著名成果(《数学法学》,第 202 卷(2009 年),第 2 期)。202 (2009), no. 2, 195-239) 在 n = 1 $n=1$ 情况下的著名结果,以及伯克斯特-马德森 (Bökstedt-Madsen) (An alpine expedition through algebraic topology, vol. 617, Contemp.Math.Math.Soc., Providence, RI, 2014, pp.我们还得到了嵌入到固定环境流形 M $M$ 的 d $d $ 边界的 ( ∞ , n ) $(\infty,n)$ 类别的结果,概括了 Randal-Williams 的结果(Int.Math.Res.IMRN 2011 (2011), no.3,572-608)在 n = 1 $n=1$ 情况下的结果。我们给出了两个应用:(1)我们完全计算了所有扩展和部分扩展的可反转 TFT,其目标是某类 n $n$ - 向量空间(对于 n ⩽ 4 $n \leqslant 4$ );(2)我们利用这一点给出了吉尔默和马斯鲍姆(Forum Math.25 (2013), no.arXiv:0912.4706).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Topology
Journal of Topology 数学-数学
CiteScore
2.00
自引率
9.10%
发文量
62
审稿时长
>12 weeks
期刊介绍: The Journal of Topology publishes papers of high quality and significance in topology, geometry and adjacent areas of mathematics. Interesting, important and often unexpected links connect topology and geometry with many other parts of mathematics, and the editors welcome submissions on exciting new advances concerning such links, as well as those in the core subject areas of the journal. The Journal of Topology was founded in 2008. It is published quarterly with articles published individually online prior to appearing in a printed issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信