Koszul self-duality of manifolds

Pub Date : 2024-04-29 DOI:10.1112/topo.12334
Connor Malin
{"title":"Koszul self-duality of manifolds","authors":"Connor Malin","doi":"10.1112/topo.12334","DOIUrl":null,"url":null,"abstract":"<p>We show that Koszul duality for operads in <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>Top</mi>\n <mo>,</mo>\n <mo>×</mo>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\mathrm{Top},\\times)$</annotation>\n </semantics></math> can be expressed via generalized Thom complexes. As an application, we prove the Koszul self-duality of the right module <span></span><math>\n <semantics>\n <msub>\n <mi>E</mi>\n <mi>M</mi>\n </msub>\n <annotation>$E_M$</annotation>\n </semantics></math> associated to a framed manifold <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math>. We discuss implications for factorization homology, embedding calculus, and confirm an old conjecture of Ching on the relation of Goodwillie calculus to manifold calculus.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We show that Koszul duality for operads in ( Top , × ) $(\mathrm{Top},\times)$ can be expressed via generalized Thom complexes. As an application, we prove the Koszul self-duality of the right module E M $E_M$ associated to a framed manifold M $M$ . We discuss implications for factorization homology, embedding calculus, and confirm an old conjecture of Ching on the relation of Goodwillie calculus to manifold calculus.

分享
查看原文
流形的科斯祖尔自对偶性
我们证明了 ( Top , × ) $(\mathrm{Top},\times)$ 中操作数的科斯祖尔对偶性可以通过广义托姆复数来表达。作为应用,我们证明了与框架流形 M $M$ 相关联的右模块 E M $E_M$ 的科斯祖尔自对偶性。我们讨论了因式分解同调、嵌入微积分的意义,并证实了程氏关于古德威利微积分与流形微积分关系的一个古老猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信