{"title":"论希尔伯特正方形的史密斯-托姆缺陷","authors":"Viatcheslav Kharlamov, Rareş Răsdeaconu","doi":"10.1112/topo.12345","DOIUrl":null,"url":null,"abstract":"<p>We give an expression for the Smith–Thom deficiency of the Hilbert square <span></span><math>\n <semantics>\n <msup>\n <mi>X</mi>\n <mrow>\n <mo>[</mo>\n <mn>2</mn>\n <mo>]</mo>\n </mrow>\n </msup>\n <annotation>$X^{[2]}$</annotation>\n </semantics></math> of a smooth real algebraic variety <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> in terms of the rank of a suitable Mayer– Vietoris mapping in several situations. As a consequence, we establish a necessary and sufficient condition for the maximality of <span></span><math>\n <semantics>\n <msup>\n <mi>X</mi>\n <mrow>\n <mo>[</mo>\n <mn>2</mn>\n <mo>]</mo>\n </mrow>\n </msup>\n <annotation>$X^{[2]}$</annotation>\n </semantics></math> in the case of projective complete intersections, and show that with a few exceptions, no real nonsingular projective complete intersection of even dimension has maximal Hilbert square. We also provide new examples of smooth real algebraic varieties with maximal Hilbert square.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12345","citationCount":"0","resultStr":"{\"title\":\"On the Smith–Thom deficiency of Hilbert squares\",\"authors\":\"Viatcheslav Kharlamov, Rareş Răsdeaconu\",\"doi\":\"10.1112/topo.12345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We give an expression for the Smith–Thom deficiency of the Hilbert square <span></span><math>\\n <semantics>\\n <msup>\\n <mi>X</mi>\\n <mrow>\\n <mo>[</mo>\\n <mn>2</mn>\\n <mo>]</mo>\\n </mrow>\\n </msup>\\n <annotation>$X^{[2]}$</annotation>\\n </semantics></math> of a smooth real algebraic variety <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math> in terms of the rank of a suitable Mayer– Vietoris mapping in several situations. As a consequence, we establish a necessary and sufficient condition for the maximality of <span></span><math>\\n <semantics>\\n <msup>\\n <mi>X</mi>\\n <mrow>\\n <mo>[</mo>\\n <mn>2</mn>\\n <mo>]</mo>\\n </mrow>\\n </msup>\\n <annotation>$X^{[2]}$</annotation>\\n </semantics></math> in the case of projective complete intersections, and show that with a few exceptions, no real nonsingular projective complete intersection of even dimension has maximal Hilbert square. We also provide new examples of smooth real algebraic varieties with maximal Hilbert square.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12345\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.12345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们给出了几种情况下光滑实代数纷 X $X$ 的希尔伯特平方 X [ 2 ] $X^{[2]}$ 的 Smith-Thom 缺陷的表达式,即合适的 Mayer- Vietoris 映射的秩。因此,在射影完全交的情况下,我们为 X [ 2 ] $X^{[2]}$ 的最大性建立了必要条件和充分条件,并证明除了少数例外,没有偶数维的实非正射完全交具有最大希尔伯特平方。我们还提供了具有最大希尔伯特平方的光滑实代数品种的新例子。
We give an expression for the Smith–Thom deficiency of the Hilbert square of a smooth real algebraic variety in terms of the rank of a suitable Mayer– Vietoris mapping in several situations. As a consequence, we establish a necessary and sufficient condition for the maximality of in the case of projective complete intersections, and show that with a few exceptions, no real nonsingular projective complete intersection of even dimension has maximal Hilbert square. We also provide new examples of smooth real algebraic varieties with maximal Hilbert square.