Journal of Topology最新文献

筛选
英文 中文
Extensions of Veech groups I: A hyperbolic action Veech群I的扩展:一个双曲作用
IF 1.1 2区 数学
Journal of Topology Pub Date : 2023-05-31 DOI: 10.1112/topo.12296
Spencer Dowdall, Matthew G. Durham, Christopher J. Leininger, Alessandro Sisto
{"title":"Extensions of Veech groups I: A hyperbolic action","authors":"Spencer Dowdall,&nbsp;Matthew G. Durham,&nbsp;Christopher J. Leininger,&nbsp;Alessandro Sisto","doi":"10.1112/topo.12296","DOIUrl":"10.1112/topo.12296","url":null,"abstract":"<p>Given a lattice Veech group in the mapping class group of a closed surface <math>\u0000 <semantics>\u0000 <mi>S</mi>\u0000 <annotation>$S$</annotation>\u0000 </semantics></math>, this paper investigates the geometry of <math>\u0000 <semantics>\u0000 <mi>Γ</mi>\u0000 <annotation>$Gamma$</annotation>\u0000 </semantics></math>, the associated <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>π</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <mi>S</mi>\u0000 </mrow>\u0000 <annotation>$pi _1S$</annotation>\u0000 </semantics></math>-extension group. We prove that <math>\u0000 <semantics>\u0000 <mi>Γ</mi>\u0000 <annotation>$Gamma$</annotation>\u0000 </semantics></math> is the fundamental group of a bundle with a singular Euclidean-by-hyperbolic geometry. Our main result is that collapsing “obvious” product regions of the universal cover produces an action of <math>\u0000 <semantics>\u0000 <mi>Γ</mi>\u0000 <annotation>$Gamma$</annotation>\u0000 </semantics></math> on a hyperbolic space, retaining most of the geometry of <math>\u0000 <semantics>\u0000 <mi>Γ</mi>\u0000 <annotation>$Gamma$</annotation>\u0000 </semantics></math>. This action is a key ingredient in the sequel where we show that <math>\u0000 <semantics>\u0000 <mi>Γ</mi>\u0000 <annotation>$Gamma$</annotation>\u0000 </semantics></math> is hierarchically hyperbolic and quasi-isometrically rigid.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12296","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47266131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Split link detection for sl ( P ) $mathfrak {sl}(P)$ link homology in characteristic P $P$ 特征P$P$中sl(P)$mathfrak {sl}(P)$链路同源性的分离链路检测
IF 1.1 2区 数学
Journal of Topology Pub Date : 2023-05-31 DOI: 10.1112/topo.12297
Joshua Wang
{"title":"Split link detection for \u0000 \u0000 \u0000 sl\u0000 (\u0000 P\u0000 )\u0000 \u0000 $mathfrak {sl}(P)$\u0000 link homology in characteristic \u0000 \u0000 P\u0000 $P$","authors":"Joshua Wang","doi":"10.1112/topo.12297","DOIUrl":"10.1112/topo.12297","url":null,"abstract":"<p>We provide a sufficient condition for splitness of a link in terms of its reduced <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>sl</mi>\u0000 <mo>(</mo>\u0000 <mi>N</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$mathfrak {sl}(N)$</annotation>\u0000 </semantics></math> link homology with arbitrary field coefficients. The proof of sufficiency uses Dowlin's spectral sequence and sutured Floer homology with twisted coefficients. If <math>\u0000 <semantics>\u0000 <mi>N</mi>\u0000 <annotation>$N$</annotation>\u0000 </semantics></math> is prime and the coefficient field is of characteristic <math>\u0000 <semantics>\u0000 <mi>N</mi>\u0000 <annotation>$N$</annotation>\u0000 </semantics></math>, then the sufficient condition for splitness is also necessary. When <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>N</mi>\u0000 <mo>=</mo>\u0000 <mn>2</mn>\u0000 </mrow>\u0000 <annotation>$N = 2$</annotation>\u0000 </semantics></math>, we recover Lipshitz–Sarkar's split link detection result for Khovanov homology with <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Z</mi>\u0000 <mo>/</mo>\u0000 <mn>2</mn>\u0000 </mrow>\u0000 <annotation>$mathbf {Z}/2$</annotation>\u0000 </semantics></math> coefficients.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43711926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The taut polynomial and the Alexander polynomial 拉紧多项式与亚历山大多项式
IF 1.1 2区 数学
Journal of Topology Pub Date : 2023-05-30 DOI: 10.1112/topo.12302
Anna Parlak
{"title":"The taut polynomial and the Alexander polynomial","authors":"Anna Parlak","doi":"10.1112/topo.12302","DOIUrl":"10.1112/topo.12302","url":null,"abstract":"<p>Landry, Minsky and Taylor defined the taut polynomial of a veering triangulation. Its specialisations generalise the Teichmüller polynomial of a fibred face of the Thurston norm ball. We prove that the taut polynomial of a veering triangulation is equal to a certain twisted Alexander polynomial of the underlying manifold. Thus, the Teichmüller polynomials are just specialisations of twisted Alexander polynomials. We also give formulae relating the taut polynomial and the untwisted Alexander polynomial. There are two formulae, depending on whether the maximal free abelian cover of a veering triangulation is edge-orientable or not. Furthermore, we consider 3-manifolds obtained by Dehn filling a veering triangulation. In this case, we give formulae that relate the specialisation of the taut polynomial under a Dehn filling and the Alexander polynomial of the Dehn-filled manifold. This extends a theorem of McMullen connecting the Teichmüller polynomial and the Alexander polynomial to the non-fibred setting, and improves it in the fibred case. We also prove a sufficient and necessary condition for the existence of an orientable fibred class in the cone over a fibred face of the Thurston norm ball.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12302","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46744213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Positive scalar curvature and homology cobordism invariants 正标量曲率与同调协不变量
IF 1.1 2区 数学
Journal of Topology Pub Date : 2023-05-29 DOI: 10.1112/topo.12299
Hokuto Konno, Masaki Taniguchi
{"title":"Positive scalar curvature and homology cobordism invariants","authors":"Hokuto Konno,&nbsp;Masaki Taniguchi","doi":"10.1112/topo.12299","DOIUrl":"10.1112/topo.12299","url":null,"abstract":"<p>We give an obstruction to positive scalar curvature metrics on 4-manifolds with the homology <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>S</mi>\u0000 <mn>1</mn>\u0000 </msup>\u0000 <mo>×</mo>\u0000 <msup>\u0000 <mi>S</mi>\u0000 <mn>3</mn>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$S^{1} times S^{3}$</annotation>\u0000 </semantics></math> described in terms of homology cobordism invariants from Seiberg–Witten theory. The main tool of the proof is a relative Bauer–Furuta-type invariant on a periodic-end 4-manifold.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43346472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A relative version of the Turaev–Viro invariants and the volume of hyperbolic polyhedral 3-manifolds Turaev–Viro不变量的一个相对版本和双曲多面体3-流形的体积
IF 1.1 2区 数学
Journal of Topology Pub Date : 2023-05-28 DOI: 10.1112/topo.12300
Tian Yang
{"title":"A relative version of the Turaev–Viro invariants and the volume of hyperbolic polyhedral 3-manifolds","authors":"Tian Yang","doi":"10.1112/topo.12300","DOIUrl":"10.1112/topo.12300","url":null,"abstract":"<p>We define a relative version of the Turaev–Viro invariants for an ideally triangulated compact 3-manifold with nonempty boundary and a coloring on the edges, generalizing the Turaev–Viro invariants [36] of the manifold. We also propose the volume conjecture for these invariants whose asymptotic behavior is related to the volume of the manifold in the hyperbolic polyhedral metric [22, 23] with singular locus of the edges and cone angles determined by the coloring, and prove the conjecture in the case that the cone angles are sufficiently small. This suggests an approach of solving the volume conjecture for the Turaev–Viro invariants proposed by Chen–Yang [8] for hyperbolic 3-manifolds with totally geodesic boundary.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12300","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44611329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Strong A 1 ${mathbb {A}}^1$ -invariance of A 1 ${mathbb {A}}^1$ -connected components of reductive algebraic groups 还原代数群的A1${mathbb{A}}^1$连通分量的强A1${
IF 1.1 2区 数学
Journal of Topology Pub Date : 2023-05-27 DOI: 10.1112/topo.12298
Chetan Balwe, Amit Hogadi, Anand Sawant
{"title":"Strong \u0000 \u0000 \u0000 A\u0000 1\u0000 \u0000 ${mathbb {A}}^1$\u0000 -invariance of \u0000 \u0000 \u0000 A\u0000 1\u0000 \u0000 ${mathbb {A}}^1$\u0000 -connected components of reductive algebraic groups","authors":"Chetan Balwe,&nbsp;Amit Hogadi,&nbsp;Anand Sawant","doi":"10.1112/topo.12298","DOIUrl":"10.1112/topo.12298","url":null,"abstract":"<p>We show that the sheaf of <math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>A</mi>\u0000 <mn>1</mn>\u0000 </msup>\u0000 <annotation>${mathbb {A}}^1$</annotation>\u0000 </semantics></math>-connected components of a reductive algebraic group over a perfect field is strongly <math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>A</mi>\u0000 <mn>1</mn>\u0000 </msup>\u0000 <annotation>${mathbb {A}}^1$</annotation>\u0000 </semantics></math>-invariant. As a consequence, torsors under such groups give rise to <math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>A</mi>\u0000 <mn>1</mn>\u0000 </msup>\u0000 <annotation>${mathbb {A}}^1$</annotation>\u0000 </semantics></math>-fiber sequences. We also show that sections of <math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>A</mi>\u0000 <mn>1</mn>\u0000 </msup>\u0000 <annotation>${mathbb {A}}^1$</annotation>\u0000 </semantics></math>-connected components of anisotropic, semisimple, simply connected algebraic groups over an arbitrary field agree with their <math>\u0000 <semantics>\u0000 <mi>R</mi>\u0000 <annotation>$R$</annotation>\u0000 </semantics></math>-equivalence classes, thereby removing the perfectness assumption in the previously known results about the characterization of isotropy in terms of affine homotopy invariance of Nisnevich locally trivial torsors.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44627731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stable isoperimetric ratios and the Hodge Laplacian of hyperbolic manifolds 稳定等周比与双曲流形的Hodge-Laplace
IF 1.1 2区 数学
Journal of Topology Pub Date : 2023-05-05 DOI: 10.1112/topo.12291
Cameron Gates Rudd
{"title":"Stable isoperimetric ratios and the Hodge Laplacian of hyperbolic manifolds","authors":"Cameron Gates Rudd","doi":"10.1112/topo.12291","DOIUrl":"10.1112/topo.12291","url":null,"abstract":"<p>We show that for a closed hyperbolic 3-manifold, the size of the first eigenvalue of the Hodge Laplacian acting on coexact 1-forms is comparable to an isoperimetric ratio relating geodesic length and stable commutator length with comparison constants that depend polynomially on the volume and on a lower bound on injectivity radius, refining estimates of Lipnowski and Stern. We use this estimate to show that there exist sequences of closed hyperbolic 3-manifolds with injectivity radius bounded below and volume going to infinity for which the 1-form Laplacian has spectral gap vanishing exponentially fast in the volume.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12291","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49510392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The Segal conjecture for smash powers 粉碎力的西格尔猜想
IF 1.1 2区 数学
Journal of Topology Pub Date : 2023-04-11 DOI: 10.1112/topo.12290
Håkon Schad Bergsaker, John Rognes
{"title":"The Segal conjecture for smash powers","authors":"Håkon Schad Bergsaker,&nbsp;John Rognes","doi":"10.1112/topo.12290","DOIUrl":"10.1112/topo.12290","url":null,"abstract":"<p>We prove that the comparison map from <math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math>-fixed points to <math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math>-homotopy fixed points, for the <math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math>-fold smash power of a bounded below spectrum <math>\u0000 <semantics>\u0000 <mi>B</mi>\u0000 <annotation>$B$</annotation>\u0000 </semantics></math>, becomes an equivalence after <math>\u0000 <semantics>\u0000 <mi>p</mi>\u0000 <annotation>$p$</annotation>\u0000 </semantics></math>-completion if <math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math> is a finite <math>\u0000 <semantics>\u0000 <mi>p</mi>\u0000 <annotation>$p$</annotation>\u0000 </semantics></math>-group and <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>H</mi>\u0000 <mo>∗</mo>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>B</mi>\u0000 <mo>;</mo>\u0000 <msub>\u0000 <mi>F</mi>\u0000 <mi>p</mi>\u0000 </msub>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$H_*(B; mathbb {F}_p)$</annotation>\u0000 </semantics></math> is of finite type. We also prove that the map becomes an equivalence after <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>I</mi>\u0000 <mo>(</mo>\u0000 <mi>G</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$I(G)$</annotation>\u0000 </semantics></math>-completion if <math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math> is any finite group and <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>π</mi>\u0000 <mo>∗</mo>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>B</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$pi _*(B)$</annotation>\u0000 </semantics></math> is of finite type, where <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>I</mi>\u0000 ","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12290","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44049001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Semisimple four-dimensional topological field theories cannot detect exotic smooth structure 半简单四维拓扑场论不能检测奇异光滑结构
IF 1.1 2区 数学
Journal of Topology Pub Date : 2023-04-11 DOI: 10.1112/topo.12288
David Reutter
{"title":"Semisimple four-dimensional topological field theories cannot detect exotic smooth structure","authors":"David Reutter","doi":"10.1112/topo.12288","DOIUrl":"https://doi.org/10.1112/topo.12288","url":null,"abstract":"<p>We prove that semisimple four-dimensional oriented topological field theories lead to stable diffeomorphism invariants and can therefore not distinguish homeomorphic closed oriented smooth four-manifolds and homotopy equivalent simply connected closed oriented smooth four-manifolds. We show that all currently known four-dimensional field theories are semisimple, including unitary field theories, and once-extended field theories which assign algebras or linear categories to 2-manifolds. As an application, we compute the value of a semisimple field theory on a simply connected closed oriented 4-manifold in terms of its Euler characteristic and signature. Moreover, we show that a semisimple four-dimensional field theory is invariant under <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>C</mi>\u0000 <msup>\u0000 <mi>P</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$mathbb {C}P^2$</annotation>\u0000 </semantics></math>-stable diffeomorphisms if and only if the Gluck twist acts trivially. This may be interpreted as the absence of fermions amongst the ‘point particles’ of the field theory. Such fermion-free field theories cannot distinguish homotopy equivalent 4-manifolds. Throughout, we illustrate our results with the Crane–Yetter–Kauffman field theory associated to a ribbon fusion category, settling in the negative the question of whether it is sensitive to smooth structure. As a purely algebraic corollary of our results applied to this field theory, we show that a ribbon fusion category contains a fermionic object if and only if its Gauss sums vanish.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12288","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50128639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simplicial descent for Chekanov–Eliashberg dg-algebras Chekanov-Eliashberg代数的简化下降
IF 1.1 2区 数学
Journal of Topology Pub Date : 2023-04-08 DOI: 10.1112/topo.12289
Johan Asplund
{"title":"Simplicial descent for Chekanov–Eliashberg dg-algebras","authors":"Johan Asplund","doi":"10.1112/topo.12289","DOIUrl":"10.1112/topo.12289","url":null,"abstract":"<p>We introduce a type of surgery decomposition of Weinstein manifolds that we call <i>simplicial decompositions</i>. The main result of this paper is that the Chekanov–Eliashberg dg-algebra of the attaching spheres of a Weinstein manifold satisfies a descent (cosheaf) property with respect to a simplicial decomposition. Simplicial decompositions generalize the notion of Weinstein connected sum and we show that there is a one-to-one correspondence (up to Weinstein homotopy) between simplicial decompositions and so-called good sectorial covers. As an application, we explicitly compute the Chekanov–Eliashberg dg-algebra of the Legendrian attaching spheres of a plumbing of copies of cotangent bundles of spheres of dimension at least three according to any plumbing quiver. We show by explicit computation that this Chekanov–Eliashberg dg-algebra is quasi-isomorphic to the Ginzburg dg-algebra of the plumbing quiver.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43939260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信