{"title":"Almost strict domination and anti-de Sitter 3-manifolds","authors":"Nathaniel Sagman","doi":"10.1112/topo.12323","DOIUrl":null,"url":null,"abstract":"<p>We define a condition called almost strict domination for pairs of representations <math>\n <semantics>\n <mrow>\n <msub>\n <mi>ρ</mi>\n <mn>1</mn>\n </msub>\n <mo>:</mo>\n <msub>\n <mi>π</mi>\n <mn>1</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>S</mi>\n <mrow>\n <mi>g</mi>\n <mo>,</mo>\n <mi>n</mi>\n </mrow>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>→</mo>\n <mi>PSL</mi>\n <mrow>\n <mo>(</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mi>R</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\rho _1:\\pi _1(S_{g,n})\\rightarrow \\textrm {PSL}(2,\\mathbb {R})$</annotation>\n </semantics></math>, <math>\n <semantics>\n <mrow>\n <msub>\n <mi>ρ</mi>\n <mn>2</mn>\n </msub>\n <mo>:</mo>\n <msub>\n <mi>π</mi>\n <mn>1</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>S</mi>\n <mrow>\n <mi>g</mi>\n <mo>,</mo>\n <mi>n</mi>\n </mrow>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>→</mo>\n <mi>G</mi>\n </mrow>\n <annotation>$\\rho _2:\\pi _1(S_{g,n})\\rightarrow G$</annotation>\n </semantics></math>, where <math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> is the isometry group of a Hadamard manifold, and prove that it holds if and only if one can find a <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>ρ</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>ρ</mi>\n <mn>2</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\rho _1,\\rho _2)$</annotation>\n </semantics></math>-equivariant spacelike maximal surface in a certain pseudo-Riemannian manifold, unique up to fixing some parameters. The proof amounts to setting up and solving an interesting variational problem that involves infinite energy harmonic maps. Adapting a construction of Tholozan, we construct all such representations and parametrise the deformation space. When <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n <mo>=</mo>\n <mi>PSL</mi>\n <mo>(</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mi>R</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$G=\\textrm {PSL}(2,\\mathbb {R})$</annotation>\n </semantics></math>, an almost strictly dominating pair is equivalent to the data of an anti-de Sitter 3-manifold with specific properties. The results on maximal surfaces provide a parametrisation of the deformation space of such 3-manifolds as a union of components in a <math>\n <semantics>\n <mrow>\n <mi>PSL</mi>\n <mo>(</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mi>R</mi>\n <mo>)</mo>\n <mo>×</mo>\n <mi>PSL</mi>\n <mo>(</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mi>R</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\textrm {PSL}(2,\\mathbb {R})\\times \\textrm {PSL}(2,\\mathbb {R})$</annotation>\n </semantics></math> relative representation variety.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12323","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We define a condition called almost strict domination for pairs of representations , , where is the isometry group of a Hadamard manifold, and prove that it holds if and only if one can find a -equivariant spacelike maximal surface in a certain pseudo-Riemannian manifold, unique up to fixing some parameters. The proof amounts to setting up and solving an interesting variational problem that involves infinite energy harmonic maps. Adapting a construction of Tholozan, we construct all such representations and parametrise the deformation space. When , an almost strictly dominating pair is equivalent to the data of an anti-de Sitter 3-manifold with specific properties. The results on maximal surfaces provide a parametrisation of the deformation space of such 3-manifolds as a union of components in a relative representation variety.
期刊介绍:
The Journal of Topology publishes papers of high quality and significance in topology, geometry and adjacent areas of mathematics. Interesting, important and often unexpected links connect topology and geometry with many other parts of mathematics, and the editors welcome submissions on exciting new advances concerning such links, as well as those in the core subject areas of the journal.
The Journal of Topology was founded in 2008. It is published quarterly with articles published individually online prior to appearing in a printed issue.