霍奇规范的第二种变化和更高的普赖姆表征

Pub Date : 2024-01-30 DOI:10.1112/topo.12322
Vladimir Marković, Ognjen Tošić
{"title":"霍奇规范的第二种变化和更高的普赖姆表征","authors":"Vladimir Marković,&nbsp;Ognjen Tošić","doi":"10.1112/topo.12322","DOIUrl":null,"url":null,"abstract":"<p>Let <math>\n <semantics>\n <mrow>\n <mi>χ</mi>\n <mo>∈</mo>\n <msup>\n <mi>H</mi>\n <mn>1</mn>\n </msup>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>Σ</mi>\n <mi>h</mi>\n </msub>\n <mo>,</mo>\n <mi>Q</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\chi \\in H^1(\\Sigma _h,\\mathbb {Q})$</annotation>\n </semantics></math> denote a rational cohomology class, and let <math>\n <semantics>\n <msub>\n <mo>H</mo>\n <mi>χ</mi>\n </msub>\n <annotation>$\\operatorname{H}_\\chi$</annotation>\n </semantics></math> denote its Hodge norm. We recover the result that <math>\n <semantics>\n <msub>\n <mo>H</mo>\n <mi>χ</mi>\n </msub>\n <annotation>$\\operatorname{H}_\\chi$</annotation>\n </semantics></math> is a plurisubharmonic function on the Teichmüller space <math>\n <semantics>\n <msub>\n <mi>T</mi>\n <mi>h</mi>\n </msub>\n <annotation>${\\mathcal {T}}_h$</annotation>\n </semantics></math>, and characterize complex directions along which the complex Hessian of <math>\n <semantics>\n <msub>\n <mo>H</mo>\n <mi>χ</mi>\n </msub>\n <annotation>$\\operatorname{H}_\\chi$</annotation>\n </semantics></math> vanishes. Moreover, we find examples of <math>\n <semantics>\n <mrow>\n <mi>χ</mi>\n <mo>∈</mo>\n <msup>\n <mi>H</mi>\n <mn>1</mn>\n </msup>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>Σ</mi>\n <mi>h</mi>\n </msub>\n <mo>,</mo>\n <mi>Q</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\chi \\in H^1(\\Sigma _{h},\\mathbb {Q})$</annotation>\n </semantics></math> such that <math>\n <semantics>\n <msub>\n <mo>H</mo>\n <mi>χ</mi>\n </msub>\n <annotation>$\\operatorname{H}_\\chi$</annotation>\n </semantics></math> is not strictly plurisubharmonic. As part of this construction, we find an unbranched covering <math>\n <semantics>\n <mrow>\n <mi>π</mi>\n <mo>:</mo>\n <msub>\n <mi>Σ</mi>\n <mi>h</mi>\n </msub>\n <mo>→</mo>\n <msub>\n <mi>Σ</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>$\\pi:\\Sigma _{h}\\rightarrow \\Sigma _2$</annotation>\n </semantics></math> such that the subgroup of <math>\n <semantics>\n <mrow>\n <msub>\n <mi>H</mi>\n <mn>1</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>Σ</mi>\n <mi>h</mi>\n </msub>\n <mo>,</mo>\n <mi>Q</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$H_1(\\Sigma _{h},\\mathbb {Q})$</annotation>\n </semantics></math> generated by lifts of simple curves from <math>\n <semantics>\n <msub>\n <mi>Σ</mi>\n <mn>2</mn>\n </msub>\n <annotation>$\\Sigma _2$</annotation>\n </semantics></math> is strictly contained in <math>\n <semantics>\n <mrow>\n <msub>\n <mi>H</mi>\n <mn>1</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>Σ</mi>\n <mi>h</mi>\n </msub>\n <mo>,</mo>\n <mi>Q</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$H_1(\\Sigma _{h},\\mathbb {Q})$</annotation>\n </semantics></math>. Finally, combining the characterization theorem with the Riemann–Roch, and the Li–Yau [Invent. Math. 69 (1982), no. 2, 269–291] gonality estimate, we show that geometrically uniform covers of <math>\n <semantics>\n <msub>\n <mi>Σ</mi>\n <mi>g</mi>\n </msub>\n <annotation>$\\Sigma _g$</annotation>\n </semantics></math> satisfy the Putman–Wieland Conjecture about the induced Higher Prym representations. </p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The second variation of the Hodge norm and higher Prym representations\",\"authors\":\"Vladimir Marković,&nbsp;Ognjen Tošić\",\"doi\":\"10.1112/topo.12322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <math>\\n <semantics>\\n <mrow>\\n <mi>χ</mi>\\n <mo>∈</mo>\\n <msup>\\n <mi>H</mi>\\n <mn>1</mn>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>Σ</mi>\\n <mi>h</mi>\\n </msub>\\n <mo>,</mo>\\n <mi>Q</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\chi \\\\in H^1(\\\\Sigma _h,\\\\mathbb {Q})$</annotation>\\n </semantics></math> denote a rational cohomology class, and let <math>\\n <semantics>\\n <msub>\\n <mo>H</mo>\\n <mi>χ</mi>\\n </msub>\\n <annotation>$\\\\operatorname{H}_\\\\chi$</annotation>\\n </semantics></math> denote its Hodge norm. We recover the result that <math>\\n <semantics>\\n <msub>\\n <mo>H</mo>\\n <mi>χ</mi>\\n </msub>\\n <annotation>$\\\\operatorname{H}_\\\\chi$</annotation>\\n </semantics></math> is a plurisubharmonic function on the Teichmüller space <math>\\n <semantics>\\n <msub>\\n <mi>T</mi>\\n <mi>h</mi>\\n </msub>\\n <annotation>${\\\\mathcal {T}}_h$</annotation>\\n </semantics></math>, and characterize complex directions along which the complex Hessian of <math>\\n <semantics>\\n <msub>\\n <mo>H</mo>\\n <mi>χ</mi>\\n </msub>\\n <annotation>$\\\\operatorname{H}_\\\\chi$</annotation>\\n </semantics></math> vanishes. Moreover, we find examples of <math>\\n <semantics>\\n <mrow>\\n <mi>χ</mi>\\n <mo>∈</mo>\\n <msup>\\n <mi>H</mi>\\n <mn>1</mn>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>Σ</mi>\\n <mi>h</mi>\\n </msub>\\n <mo>,</mo>\\n <mi>Q</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\chi \\\\in H^1(\\\\Sigma _{h},\\\\mathbb {Q})$</annotation>\\n </semantics></math> such that <math>\\n <semantics>\\n <msub>\\n <mo>H</mo>\\n <mi>χ</mi>\\n </msub>\\n <annotation>$\\\\operatorname{H}_\\\\chi$</annotation>\\n </semantics></math> is not strictly plurisubharmonic. As part of this construction, we find an unbranched covering <math>\\n <semantics>\\n <mrow>\\n <mi>π</mi>\\n <mo>:</mo>\\n <msub>\\n <mi>Σ</mi>\\n <mi>h</mi>\\n </msub>\\n <mo>→</mo>\\n <msub>\\n <mi>Σ</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation>$\\\\pi:\\\\Sigma _{h}\\\\rightarrow \\\\Sigma _2$</annotation>\\n </semantics></math> such that the subgroup of <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>H</mi>\\n <mn>1</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>Σ</mi>\\n <mi>h</mi>\\n </msub>\\n <mo>,</mo>\\n <mi>Q</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$H_1(\\\\Sigma _{h},\\\\mathbb {Q})$</annotation>\\n </semantics></math> generated by lifts of simple curves from <math>\\n <semantics>\\n <msub>\\n <mi>Σ</mi>\\n <mn>2</mn>\\n </msub>\\n <annotation>$\\\\Sigma _2$</annotation>\\n </semantics></math> is strictly contained in <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>H</mi>\\n <mn>1</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>Σ</mi>\\n <mi>h</mi>\\n </msub>\\n <mo>,</mo>\\n <mi>Q</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$H_1(\\\\Sigma _{h},\\\\mathbb {Q})$</annotation>\\n </semantics></math>. Finally, combining the characterization theorem with the Riemann–Roch, and the Li–Yau [Invent. Math. 69 (1982), no. 2, 269–291] gonality estimate, we show that geometrically uniform covers of <math>\\n <semantics>\\n <msub>\\n <mi>Σ</mi>\\n <mi>g</mi>\\n </msub>\\n <annotation>$\\\\Sigma _g$</annotation>\\n </semantics></math> satisfy the Putman–Wieland Conjecture about the induced Higher Prym representations. </p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.12322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 χ∈ H 1 ( Σ h , Q ) $chi\in H^1(\Sigma _h,\mathbb{Q})$表示一个有理同调类,让 H χ $\operatorname{H}_\chi$ 表示它的霍奇规范。我们恢复了 H χ $\operatorname{H}_\chi$ 是泰赫米勒空间 T h ${\mathcal {T}}_h$ 上的复次谐函数这一结果,并描述了 H χ $\operatorname{H}_\chi$ 的复 Hessian 沿其消失的复方向的特征。此外,我们在 H^1(\Sigma _{h},\mathbb {Q})$中找到了 χ ∈ H 1 ( Σ h , Q ) $chi\ in H^1(\Sigma _{h},\mathbb {Q})$的例子,这样 H χ $operatorname{H}_\chi$ 就不是严格的全次谐波。作为这个构造的一部分,我们找到了一个无分支覆盖 π : Σ h → Σ 2 $\pi:\Sigma _{h}\rightarrow \Sigma _2$,使得 H 1 ( Σ h , Q ) $H_1(\Sigma _{h},\mathbb {Q})$ 由来自 Σ 2 $\Sigma _2$的简单曲线的提升所产生的子群严格包含在 H 1 ( Σ h , Q ) $H_1(\Sigma _{h},\mathbb {Q})$ 中。最后,结合特征定理、黎曼-罗赫(Riemann-Roch)和李-尤(Li-Yau)[发明数学 69 (1982),第 2 期,269-291] 单调性估计,我们证明了 Σ g $\Sigma _g$ 的几何均匀盖满足普特曼-维兰德猜想(Putman-Wieland Conjecture about the induced Higher Prym representations)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The second variation of the Hodge norm and higher Prym representations

Let χ H 1 ( Σ h , Q ) $\chi \in H^1(\Sigma _h,\mathbb {Q})$ denote a rational cohomology class, and let H χ $\operatorname{H}_\chi$ denote its Hodge norm. We recover the result that H χ $\operatorname{H}_\chi$ is a plurisubharmonic function on the Teichmüller space T h ${\mathcal {T}}_h$ , and characterize complex directions along which the complex Hessian of H χ $\operatorname{H}_\chi$ vanishes. Moreover, we find examples of χ H 1 ( Σ h , Q ) $\chi \in H^1(\Sigma _{h},\mathbb {Q})$ such that H χ $\operatorname{H}_\chi$ is not strictly plurisubharmonic. As part of this construction, we find an unbranched covering π : Σ h Σ 2 $\pi:\Sigma _{h}\rightarrow \Sigma _2$ such that the subgroup of H 1 ( Σ h , Q ) $H_1(\Sigma _{h},\mathbb {Q})$ generated by lifts of simple curves from Σ 2 $\Sigma _2$ is strictly contained in H 1 ( Σ h , Q ) $H_1(\Sigma _{h},\mathbb {Q})$ . Finally, combining the characterization theorem with the Riemann–Roch, and the Li–Yau [Invent. Math. 69 (1982), no. 2, 269–291] gonality estimate, we show that geometrically uniform covers of Σ g $\Sigma _g$ satisfy the Putman–Wieland Conjecture about the induced Higher Prym representations. 

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信