霍奇规范的第二种变化和更高的普赖姆表征

IF 0.8 2区 数学 Q2 MATHEMATICS
Vladimir Marković, Ognjen Tošić
{"title":"霍奇规范的第二种变化和更高的普赖姆表征","authors":"Vladimir Marković,&nbsp;Ognjen Tošić","doi":"10.1112/topo.12322","DOIUrl":null,"url":null,"abstract":"<p>Let <math>\n <semantics>\n <mrow>\n <mi>χ</mi>\n <mo>∈</mo>\n <msup>\n <mi>H</mi>\n <mn>1</mn>\n </msup>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>Σ</mi>\n <mi>h</mi>\n </msub>\n <mo>,</mo>\n <mi>Q</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\chi \\in H^1(\\Sigma _h,\\mathbb {Q})$</annotation>\n </semantics></math> denote a rational cohomology class, and let <math>\n <semantics>\n <msub>\n <mo>H</mo>\n <mi>χ</mi>\n </msub>\n <annotation>$\\operatorname{H}_\\chi$</annotation>\n </semantics></math> denote its Hodge norm. We recover the result that <math>\n <semantics>\n <msub>\n <mo>H</mo>\n <mi>χ</mi>\n </msub>\n <annotation>$\\operatorname{H}_\\chi$</annotation>\n </semantics></math> is a plurisubharmonic function on the Teichmüller space <math>\n <semantics>\n <msub>\n <mi>T</mi>\n <mi>h</mi>\n </msub>\n <annotation>${\\mathcal {T}}_h$</annotation>\n </semantics></math>, and characterize complex directions along which the complex Hessian of <math>\n <semantics>\n <msub>\n <mo>H</mo>\n <mi>χ</mi>\n </msub>\n <annotation>$\\operatorname{H}_\\chi$</annotation>\n </semantics></math> vanishes. Moreover, we find examples of <math>\n <semantics>\n <mrow>\n <mi>χ</mi>\n <mo>∈</mo>\n <msup>\n <mi>H</mi>\n <mn>1</mn>\n </msup>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>Σ</mi>\n <mi>h</mi>\n </msub>\n <mo>,</mo>\n <mi>Q</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\chi \\in H^1(\\Sigma _{h},\\mathbb {Q})$</annotation>\n </semantics></math> such that <math>\n <semantics>\n <msub>\n <mo>H</mo>\n <mi>χ</mi>\n </msub>\n <annotation>$\\operatorname{H}_\\chi$</annotation>\n </semantics></math> is not strictly plurisubharmonic. As part of this construction, we find an unbranched covering <math>\n <semantics>\n <mrow>\n <mi>π</mi>\n <mo>:</mo>\n <msub>\n <mi>Σ</mi>\n <mi>h</mi>\n </msub>\n <mo>→</mo>\n <msub>\n <mi>Σ</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>$\\pi:\\Sigma _{h}\\rightarrow \\Sigma _2$</annotation>\n </semantics></math> such that the subgroup of <math>\n <semantics>\n <mrow>\n <msub>\n <mi>H</mi>\n <mn>1</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>Σ</mi>\n <mi>h</mi>\n </msub>\n <mo>,</mo>\n <mi>Q</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$H_1(\\Sigma _{h},\\mathbb {Q})$</annotation>\n </semantics></math> generated by lifts of simple curves from <math>\n <semantics>\n <msub>\n <mi>Σ</mi>\n <mn>2</mn>\n </msub>\n <annotation>$\\Sigma _2$</annotation>\n </semantics></math> is strictly contained in <math>\n <semantics>\n <mrow>\n <msub>\n <mi>H</mi>\n <mn>1</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>Σ</mi>\n <mi>h</mi>\n </msub>\n <mo>,</mo>\n <mi>Q</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$H_1(\\Sigma _{h},\\mathbb {Q})$</annotation>\n </semantics></math>. Finally, combining the characterization theorem with the Riemann–Roch, and the Li–Yau [Invent. Math. 69 (1982), no. 2, 269–291] gonality estimate, we show that geometrically uniform covers of <math>\n <semantics>\n <msub>\n <mi>Σ</mi>\n <mi>g</mi>\n </msub>\n <annotation>$\\Sigma _g$</annotation>\n </semantics></math> satisfy the Putman–Wieland Conjecture about the induced Higher Prym representations. </p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The second variation of the Hodge norm and higher Prym representations\",\"authors\":\"Vladimir Marković,&nbsp;Ognjen Tošić\",\"doi\":\"10.1112/topo.12322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <math>\\n <semantics>\\n <mrow>\\n <mi>χ</mi>\\n <mo>∈</mo>\\n <msup>\\n <mi>H</mi>\\n <mn>1</mn>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>Σ</mi>\\n <mi>h</mi>\\n </msub>\\n <mo>,</mo>\\n <mi>Q</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\chi \\\\in H^1(\\\\Sigma _h,\\\\mathbb {Q})$</annotation>\\n </semantics></math> denote a rational cohomology class, and let <math>\\n <semantics>\\n <msub>\\n <mo>H</mo>\\n <mi>χ</mi>\\n </msub>\\n <annotation>$\\\\operatorname{H}_\\\\chi$</annotation>\\n </semantics></math> denote its Hodge norm. We recover the result that <math>\\n <semantics>\\n <msub>\\n <mo>H</mo>\\n <mi>χ</mi>\\n </msub>\\n <annotation>$\\\\operatorname{H}_\\\\chi$</annotation>\\n </semantics></math> is a plurisubharmonic function on the Teichmüller space <math>\\n <semantics>\\n <msub>\\n <mi>T</mi>\\n <mi>h</mi>\\n </msub>\\n <annotation>${\\\\mathcal {T}}_h$</annotation>\\n </semantics></math>, and characterize complex directions along which the complex Hessian of <math>\\n <semantics>\\n <msub>\\n <mo>H</mo>\\n <mi>χ</mi>\\n </msub>\\n <annotation>$\\\\operatorname{H}_\\\\chi$</annotation>\\n </semantics></math> vanishes. Moreover, we find examples of <math>\\n <semantics>\\n <mrow>\\n <mi>χ</mi>\\n <mo>∈</mo>\\n <msup>\\n <mi>H</mi>\\n <mn>1</mn>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>Σ</mi>\\n <mi>h</mi>\\n </msub>\\n <mo>,</mo>\\n <mi>Q</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\chi \\\\in H^1(\\\\Sigma _{h},\\\\mathbb {Q})$</annotation>\\n </semantics></math> such that <math>\\n <semantics>\\n <msub>\\n <mo>H</mo>\\n <mi>χ</mi>\\n </msub>\\n <annotation>$\\\\operatorname{H}_\\\\chi$</annotation>\\n </semantics></math> is not strictly plurisubharmonic. As part of this construction, we find an unbranched covering <math>\\n <semantics>\\n <mrow>\\n <mi>π</mi>\\n <mo>:</mo>\\n <msub>\\n <mi>Σ</mi>\\n <mi>h</mi>\\n </msub>\\n <mo>→</mo>\\n <msub>\\n <mi>Σ</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation>$\\\\pi:\\\\Sigma _{h}\\\\rightarrow \\\\Sigma _2$</annotation>\\n </semantics></math> such that the subgroup of <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>H</mi>\\n <mn>1</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>Σ</mi>\\n <mi>h</mi>\\n </msub>\\n <mo>,</mo>\\n <mi>Q</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$H_1(\\\\Sigma _{h},\\\\mathbb {Q})$</annotation>\\n </semantics></math> generated by lifts of simple curves from <math>\\n <semantics>\\n <msub>\\n <mi>Σ</mi>\\n <mn>2</mn>\\n </msub>\\n <annotation>$\\\\Sigma _2$</annotation>\\n </semantics></math> is strictly contained in <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>H</mi>\\n <mn>1</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>Σ</mi>\\n <mi>h</mi>\\n </msub>\\n <mo>,</mo>\\n <mi>Q</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$H_1(\\\\Sigma _{h},\\\\mathbb {Q})$</annotation>\\n </semantics></math>. Finally, combining the characterization theorem with the Riemann–Roch, and the Li–Yau [Invent. Math. 69 (1982), no. 2, 269–291] gonality estimate, we show that geometrically uniform covers of <math>\\n <semantics>\\n <msub>\\n <mi>Σ</mi>\\n <mi>g</mi>\\n </msub>\\n <annotation>$\\\\Sigma _g$</annotation>\\n </semantics></math> satisfy the Putman–Wieland Conjecture about the induced Higher Prym representations. </p>\",\"PeriodicalId\":56114,\"journal\":{\"name\":\"Journal of Topology\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Topology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.12322\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12322","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 χ∈ H 1 ( Σ h , Q ) $chi\in H^1(\Sigma _h,\mathbb{Q})$表示一个有理同调类,让 H χ $\operatorname{H}_\chi$ 表示它的霍奇规范。我们恢复了 H χ $\operatorname{H}_\chi$ 是泰赫米勒空间 T h ${\mathcal {T}}_h$ 上的复次谐函数这一结果,并描述了 H χ $\operatorname{H}_\chi$ 的复 Hessian 沿其消失的复方向的特征。此外,我们在 H^1(\Sigma _{h},\mathbb {Q})$中找到了 χ ∈ H 1 ( Σ h , Q ) $chi\ in H^1(\Sigma _{h},\mathbb {Q})$的例子,这样 H χ $operatorname{H}_\chi$ 就不是严格的全次谐波。作为这个构造的一部分,我们找到了一个无分支覆盖 π : Σ h → Σ 2 $\pi:\Sigma _{h}\rightarrow \Sigma _2$,使得 H 1 ( Σ h , Q ) $H_1(\Sigma _{h},\mathbb {Q})$ 由来自 Σ 2 $\Sigma _2$的简单曲线的提升所产生的子群严格包含在 H 1 ( Σ h , Q ) $H_1(\Sigma _{h},\mathbb {Q})$ 中。最后,结合特征定理、黎曼-罗赫(Riemann-Roch)和李-尤(Li-Yau)[发明数学 69 (1982),第 2 期,269-291] 单调性估计,我们证明了 Σ g $\Sigma _g$ 的几何均匀盖满足普特曼-维兰德猜想(Putman-Wieland Conjecture about the induced Higher Prym representations)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The second variation of the Hodge norm and higher Prym representations

Let χ H 1 ( Σ h , Q ) $\chi \in H^1(\Sigma _h,\mathbb {Q})$ denote a rational cohomology class, and let H χ $\operatorname{H}_\chi$ denote its Hodge norm. We recover the result that H χ $\operatorname{H}_\chi$ is a plurisubharmonic function on the Teichmüller space T h ${\mathcal {T}}_h$ , and characterize complex directions along which the complex Hessian of H χ $\operatorname{H}_\chi$ vanishes. Moreover, we find examples of χ H 1 ( Σ h , Q ) $\chi \in H^1(\Sigma _{h},\mathbb {Q})$ such that H χ $\operatorname{H}_\chi$ is not strictly plurisubharmonic. As part of this construction, we find an unbranched covering π : Σ h Σ 2 $\pi:\Sigma _{h}\rightarrow \Sigma _2$ such that the subgroup of H 1 ( Σ h , Q ) $H_1(\Sigma _{h},\mathbb {Q})$ generated by lifts of simple curves from Σ 2 $\Sigma _2$ is strictly contained in H 1 ( Σ h , Q ) $H_1(\Sigma _{h},\mathbb {Q})$ . Finally, combining the characterization theorem with the Riemann–Roch, and the Li–Yau [Invent. Math. 69 (1982), no. 2, 269–291] gonality estimate, we show that geometrically uniform covers of Σ g $\Sigma _g$ satisfy the Putman–Wieland Conjecture about the induced Higher Prym representations. 

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Topology
Journal of Topology 数学-数学
CiteScore
2.00
自引率
9.10%
发文量
62
审稿时长
>12 weeks
期刊介绍: The Journal of Topology publishes papers of high quality and significance in topology, geometry and adjacent areas of mathematics. Interesting, important and often unexpected links connect topology and geometry with many other parts of mathematics, and the editors welcome submissions on exciting new advances concerning such links, as well as those in the core subject areas of the journal. The Journal of Topology was founded in 2008. It is published quarterly with articles published individually online prior to appearing in a printed issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信