几乎严格的支配与反德西特3-漫游

Pub Date : 2024-01-30 DOI:10.1112/topo.12323
Nathaniel Sagman
{"title":"几乎严格的支配与反德西特3-漫游","authors":"Nathaniel Sagman","doi":"10.1112/topo.12323","DOIUrl":null,"url":null,"abstract":"<p>We define a condition called almost strict domination for pairs of representations <math>\n <semantics>\n <mrow>\n <msub>\n <mi>ρ</mi>\n <mn>1</mn>\n </msub>\n <mo>:</mo>\n <msub>\n <mi>π</mi>\n <mn>1</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>S</mi>\n <mrow>\n <mi>g</mi>\n <mo>,</mo>\n <mi>n</mi>\n </mrow>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>→</mo>\n <mi>PSL</mi>\n <mrow>\n <mo>(</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mi>R</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\rho _1:\\pi _1(S_{g,n})\\rightarrow \\textrm {PSL}(2,\\mathbb {R})$</annotation>\n </semantics></math>, <math>\n <semantics>\n <mrow>\n <msub>\n <mi>ρ</mi>\n <mn>2</mn>\n </msub>\n <mo>:</mo>\n <msub>\n <mi>π</mi>\n <mn>1</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>S</mi>\n <mrow>\n <mi>g</mi>\n <mo>,</mo>\n <mi>n</mi>\n </mrow>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>→</mo>\n <mi>G</mi>\n </mrow>\n <annotation>$\\rho _2:\\pi _1(S_{g,n})\\rightarrow G$</annotation>\n </semantics></math>, where <math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> is the isometry group of a Hadamard manifold, and prove that it holds if and only if one can find a <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>ρ</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>ρ</mi>\n <mn>2</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\rho _1,\\rho _2)$</annotation>\n </semantics></math>-equivariant spacelike maximal surface in a certain pseudo-Riemannian manifold, unique up to fixing some parameters. The proof amounts to setting up and solving an interesting variational problem that involves infinite energy harmonic maps. Adapting a construction of Tholozan, we construct all such representations and parametrise the deformation space. When <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n <mo>=</mo>\n <mi>PSL</mi>\n <mo>(</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mi>R</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$G=\\textrm {PSL}(2,\\mathbb {R})$</annotation>\n </semantics></math>, an almost strictly dominating pair is equivalent to the data of an anti-de Sitter 3-manifold with specific properties. The results on maximal surfaces provide a parametrisation of the deformation space of such 3-manifolds as a union of components in a <math>\n <semantics>\n <mrow>\n <mi>PSL</mi>\n <mo>(</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mi>R</mi>\n <mo>)</mo>\n <mo>×</mo>\n <mi>PSL</mi>\n <mo>(</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mi>R</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\textrm {PSL}(2,\\mathbb {R})\\times \\textrm {PSL}(2,\\mathbb {R})$</annotation>\n </semantics></math> relative representation variety.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Almost strict domination and anti-de Sitter 3-manifolds\",\"authors\":\"Nathaniel Sagman\",\"doi\":\"10.1112/topo.12323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We define a condition called almost strict domination for pairs of representations <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>ρ</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>:</mo>\\n <msub>\\n <mi>π</mi>\\n <mn>1</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>S</mi>\\n <mrow>\\n <mi>g</mi>\\n <mo>,</mo>\\n <mi>n</mi>\\n </mrow>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <mo>→</mo>\\n <mi>PSL</mi>\\n <mrow>\\n <mo>(</mo>\\n <mn>2</mn>\\n <mo>,</mo>\\n <mi>R</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\rho _1:\\\\pi _1(S_{g,n})\\\\rightarrow \\\\textrm {PSL}(2,\\\\mathbb {R})$</annotation>\\n </semantics></math>, <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>ρ</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>:</mo>\\n <msub>\\n <mi>π</mi>\\n <mn>1</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>S</mi>\\n <mrow>\\n <mi>g</mi>\\n <mo>,</mo>\\n <mi>n</mi>\\n </mrow>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <mo>→</mo>\\n <mi>G</mi>\\n </mrow>\\n <annotation>$\\\\rho _2:\\\\pi _1(S_{g,n})\\\\rightarrow G$</annotation>\\n </semantics></math>, where <math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math> is the isometry group of a Hadamard manifold, and prove that it holds if and only if one can find a <math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>ρ</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>ρ</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(\\\\rho _1,\\\\rho _2)$</annotation>\\n </semantics></math>-equivariant spacelike maximal surface in a certain pseudo-Riemannian manifold, unique up to fixing some parameters. The proof amounts to setting up and solving an interesting variational problem that involves infinite energy harmonic maps. Adapting a construction of Tholozan, we construct all such representations and parametrise the deformation space. When <math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n <mo>=</mo>\\n <mi>PSL</mi>\\n <mo>(</mo>\\n <mn>2</mn>\\n <mo>,</mo>\\n <mi>R</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$G=\\\\textrm {PSL}(2,\\\\mathbb {R})$</annotation>\\n </semantics></math>, an almost strictly dominating pair is equivalent to the data of an anti-de Sitter 3-manifold with specific properties. The results on maximal surfaces provide a parametrisation of the deformation space of such 3-manifolds as a union of components in a <math>\\n <semantics>\\n <mrow>\\n <mi>PSL</mi>\\n <mo>(</mo>\\n <mn>2</mn>\\n <mo>,</mo>\\n <mi>R</mi>\\n <mo>)</mo>\\n <mo>×</mo>\\n <mi>PSL</mi>\\n <mo>(</mo>\\n <mn>2</mn>\\n <mo>,</mo>\\n <mi>R</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\textrm {PSL}(2,\\\\mathbb {R})\\\\times \\\\textrm {PSL}(2,\\\\mathbb {R})$</annotation>\\n </semantics></math> relative representation variety.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.12323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们为ρ 1 : π 1 ( S g , n ) → PSL ( 2 , R ) $\rho _1:\pi _1(S_{g,n})\rightarrow \textrm {PSL}(2,n) → PSL ( 2 , R ) $\rho _1:\pi _1(S_{g,n})\rightarrow \textrm {PSL}(2,\mathbb {R})$ , ρ 2 : π 1 ( S g , n ) → G $\rho _2:\pi _1(S_{g,n})\rightarrow G$ ,其中 G $G$ 是哈达玛流形的等距群,并证明当且仅当我们能在某个伪黎曼流形中找到一个 ( ρ 1 , ρ 2 ) $(\rho _1,\rho _2)$ 的等距最大曲面时,它才成立,而且在固定某些参数之前是唯一的。这个证明相当于建立并解决了一个涉及无限能量谐波映射的有趣的变分问题。根据索洛赞(Tholozan)的构造,我们构建了所有此类表示,并对变形空间进行了参数化。当 G = PSL ( 2 , R ) $G=\textrm{PSL}(2,\mathbb{R})$时,几乎严格的支配对等价于具有特定性质的反德西特 3-manifold的数据。关于最大曲面的结果提供了这样的 3-manifolds变形空间的参数,即 PSL ( 2 , R ) × PSL ( 2 , R ) $\textrm {PSL}(2,\mathbb {R})\times \textrm {PSL}(2,\mathbb {R})$ 相对表象多样性中的分量的联合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Almost strict domination and anti-de Sitter 3-manifolds

We define a condition called almost strict domination for pairs of representations ρ 1 : π 1 ( S g , n ) PSL ( 2 , R ) $\rho _1:\pi _1(S_{g,n})\rightarrow \textrm {PSL}(2,\mathbb {R})$ , ρ 2 : π 1 ( S g , n ) G $\rho _2:\pi _1(S_{g,n})\rightarrow G$ , where G $G$ is the isometry group of a Hadamard manifold, and prove that it holds if and only if one can find a ( ρ 1 , ρ 2 ) $(\rho _1,\rho _2)$ -equivariant spacelike maximal surface in a certain pseudo-Riemannian manifold, unique up to fixing some parameters. The proof amounts to setting up and solving an interesting variational problem that involves infinite energy harmonic maps. Adapting a construction of Tholozan, we construct all such representations and parametrise the deformation space. When G = PSL ( 2 , R ) $G=\textrm {PSL}(2,\mathbb {R})$ , an almost strictly dominating pair is equivalent to the data of an anti-de Sitter 3-manifold with specific properties. The results on maximal surfaces provide a parametrisation of the deformation space of such 3-manifolds as a union of components in a PSL ( 2 , R ) × PSL ( 2 , R ) $\textrm {PSL}(2,\mathbb {R})\times \textrm {PSL}(2,\mathbb {R})$ relative representation variety.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信