有限生成群及其子群的渐近维数和副长维数

Pub Date : 2023-12-03 DOI:10.1112/topo.12314
Levi Sledd
{"title":"有限生成群及其子群的渐近维数和副长维数","authors":"Levi Sledd","doi":"10.1112/topo.12314","DOIUrl":null,"url":null,"abstract":"<p>We prove that for all <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>,</mo>\n <mi>m</mi>\n <mo>,</mo>\n <mi>n</mi>\n <mo>∈</mo>\n <mi>N</mi>\n <mo>∪</mo>\n <mo>{</mo>\n <mi>∞</mi>\n <mo>}</mo>\n </mrow>\n <annotation>$k,m,n \\in \\mathbb {N} \\cup \\lbrace \\infty \\rbrace$</annotation>\n </semantics></math> with <math>\n <semantics>\n <mrow>\n <mn>4</mn>\n <mo>⩽</mo>\n <mi>k</mi>\n <mo>⩽</mo>\n <mi>m</mi>\n <mo>⩽</mo>\n <mi>n</mi>\n </mrow>\n <annotation>$4 \\leqslant k \\leqslant m \\leqslant n$</annotation>\n </semantics></math>, there exists a finitely generated group <math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> with a finitely generated subgroup <math>\n <semantics>\n <mi>H</mi>\n <annotation>$H$</annotation>\n </semantics></math> such that <math>\n <semantics>\n <mrow>\n <mo>asdim</mo>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n <mo>=</mo>\n <mi>k</mi>\n </mrow>\n <annotation>$\\operatorname{asdim}(G) = k$</annotation>\n </semantics></math>, <math>\n <semantics>\n <mrow>\n <msub>\n <mo>asdim</mo>\n <mrow>\n <mi>A</mi>\n <mi>N</mi>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mi>m</mi>\n </mrow>\n <annotation>$\\operatorname{asdim}_{\\textnormal {AN}}(G) = m$</annotation>\n </semantics></math>, and <math>\n <semantics>\n <mrow>\n <msub>\n <mo>asdim</mo>\n <mrow>\n <mi>A</mi>\n <mi>N</mi>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>H</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mi>n</mi>\n </mrow>\n <annotation>$\\operatorname{asdim}_{\\textnormal {AN}}(H)=n$</annotation>\n </semantics></math>. This simultaneously answers two open questions in asymptotic dimension theory.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Asymptotic and Assouad–Nagata dimension of finitely generated groups and their subgroups\",\"authors\":\"Levi Sledd\",\"doi\":\"10.1112/topo.12314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that for all <math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>,</mo>\\n <mi>m</mi>\\n <mo>,</mo>\\n <mi>n</mi>\\n <mo>∈</mo>\\n <mi>N</mi>\\n <mo>∪</mo>\\n <mo>{</mo>\\n <mi>∞</mi>\\n <mo>}</mo>\\n </mrow>\\n <annotation>$k,m,n \\\\in \\\\mathbb {N} \\\\cup \\\\lbrace \\\\infty \\\\rbrace$</annotation>\\n </semantics></math> with <math>\\n <semantics>\\n <mrow>\\n <mn>4</mn>\\n <mo>⩽</mo>\\n <mi>k</mi>\\n <mo>⩽</mo>\\n <mi>m</mi>\\n <mo>⩽</mo>\\n <mi>n</mi>\\n </mrow>\\n <annotation>$4 \\\\leqslant k \\\\leqslant m \\\\leqslant n$</annotation>\\n </semantics></math>, there exists a finitely generated group <math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math> with a finitely generated subgroup <math>\\n <semantics>\\n <mi>H</mi>\\n <annotation>$H$</annotation>\\n </semantics></math> such that <math>\\n <semantics>\\n <mrow>\\n <mo>asdim</mo>\\n <mo>(</mo>\\n <mi>G</mi>\\n <mo>)</mo>\\n <mo>=</mo>\\n <mi>k</mi>\\n </mrow>\\n <annotation>$\\\\operatorname{asdim}(G) = k$</annotation>\\n </semantics></math>, <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mo>asdim</mo>\\n <mrow>\\n <mi>A</mi>\\n <mi>N</mi>\\n </mrow>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>G</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>=</mo>\\n <mi>m</mi>\\n </mrow>\\n <annotation>$\\\\operatorname{asdim}_{\\\\textnormal {AN}}(G) = m$</annotation>\\n </semantics></math>, and <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mo>asdim</mo>\\n <mrow>\\n <mi>A</mi>\\n <mi>N</mi>\\n </mrow>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>H</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>=</mo>\\n <mi>n</mi>\\n </mrow>\\n <annotation>$\\\\operatorname{asdim}_{\\\\textnormal {AN}}(H)=n$</annotation>\\n </semantics></math>. This simultaneously answers two open questions in asymptotic dimension theory.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.12314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们向所有k m证明,n ∈ N ∪ { ∞ } $ k, m, n在杯赛mathbb {n} \ \ lbrace infty \ rbrace $ 一起散步 4 ⩽ k ⩽ m ⩽ n $ 4 \ leqslant k leqslant m \ leqslant n $ ,在一个有限的G美元集团中存在着一个有限的G美元子集团H美元H这样的asdim (G)asdim AN (G)和asdim AN (H)这实际上是两个在异步维度问题的答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Asymptotic and Assouad–Nagata dimension of finitely generated groups and their subgroups

We prove that for all k , m , n N { } $k,m,n \in \mathbb {N} \cup \lbrace \infty \rbrace$ with 4 k m n $4 \leqslant k \leqslant m \leqslant n$ , there exists a finitely generated group G $G$ with a finitely generated subgroup H $H$ such that asdim ( G ) = k $\operatorname{asdim}(G) = k$ , asdim A N ( G ) = m $\operatorname{asdim}_{\textnormal {AN}}(G) = m$ , and asdim A N ( H ) = n $\operatorname{asdim}_{\textnormal {AN}}(H)=n$ . This simultaneously answers two open questions in asymptotic dimension theory.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信