相对位移泊松结构的椭圆型双哈密顿结构

Pub Date : 2023-11-22 DOI:10.1112/topo.12315
Zheng Hua, Alexander Polishchuk
{"title":"相对位移泊松结构的椭圆型双哈密顿结构","authors":"Zheng Hua,&nbsp;Alexander Polishchuk","doi":"10.1112/topo.12315","DOIUrl":null,"url":null,"abstract":"<p>In this paper, generalizing our previous construction, we equip the relative moduli stack of complexes over a Calabi–Yau fibration (possibly with singular fibers) with a shifted Poisson structure. Applying this construction to the anticanonical linear systems on surfaces, we get examples of compatible Poisson brackets on projective spaces extending Feigin–Odesskii Poisson brackets. Computing explicitly the corresponding compatible brackets coming from Hirzebruch surfaces, we recover the brackets defined by Odesskii–Wolf.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Elliptic bihamiltonian structures from relative shifted Poisson structures\",\"authors\":\"Zheng Hua,&nbsp;Alexander Polishchuk\",\"doi\":\"10.1112/topo.12315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, generalizing our previous construction, we equip the relative moduli stack of complexes over a Calabi–Yau fibration (possibly with singular fibers) with a shifted Poisson structure. Applying this construction to the anticanonical linear systems on surfaces, we get examples of compatible Poisson brackets on projective spaces extending Feigin–Odesskii Poisson brackets. Computing explicitly the corresponding compatible brackets coming from Hirzebruch surfaces, we recover the brackets defined by Odesskii–Wolf.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.12315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在本文中,推广我们之前的构造,我们在Calabi-Yau纤维(可能有奇异纤维)上配置了移位泊松结构的配合物的相对模堆栈。将此构造应用于曲面上的反正则线性系统,得到了投影空间上由Feigin-Odesskii泊松括号扩展而来的相容泊松括号的例子。通过显式计算来自Hirzebruch曲面的相应兼容括号,我们恢复了Odesskii-Wolf定义的括号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Elliptic bihamiltonian structures from relative shifted Poisson structures

In this paper, generalizing our previous construction, we equip the relative moduli stack of complexes over a Calabi–Yau fibration (possibly with singular fibers) with a shifted Poisson structure. Applying this construction to the anticanonical linear systems on surfaces, we get examples of compatible Poisson brackets on projective spaces extending Feigin–Odesskii Poisson brackets. Computing explicitly the corresponding compatible brackets coming from Hirzebruch surfaces, we recover the brackets defined by Odesskii–Wolf.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信