{"title":"The second variation of the Hodge norm and higher Prym representations","authors":"Vladimir Marković, Ognjen Tošić","doi":"10.1112/topo.12322","DOIUrl":null,"url":null,"abstract":"<p>Let <math>\n <semantics>\n <mrow>\n <mi>χ</mi>\n <mo>∈</mo>\n <msup>\n <mi>H</mi>\n <mn>1</mn>\n </msup>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>Σ</mi>\n <mi>h</mi>\n </msub>\n <mo>,</mo>\n <mi>Q</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\chi \\in H^1(\\Sigma _h,\\mathbb {Q})$</annotation>\n </semantics></math> denote a rational cohomology class, and let <math>\n <semantics>\n <msub>\n <mo>H</mo>\n <mi>χ</mi>\n </msub>\n <annotation>$\\operatorname{H}_\\chi$</annotation>\n </semantics></math> denote its Hodge norm. We recover the result that <math>\n <semantics>\n <msub>\n <mo>H</mo>\n <mi>χ</mi>\n </msub>\n <annotation>$\\operatorname{H}_\\chi$</annotation>\n </semantics></math> is a plurisubharmonic function on the Teichmüller space <math>\n <semantics>\n <msub>\n <mi>T</mi>\n <mi>h</mi>\n </msub>\n <annotation>${\\mathcal {T}}_h$</annotation>\n </semantics></math>, and characterize complex directions along which the complex Hessian of <math>\n <semantics>\n <msub>\n <mo>H</mo>\n <mi>χ</mi>\n </msub>\n <annotation>$\\operatorname{H}_\\chi$</annotation>\n </semantics></math> vanishes. Moreover, we find examples of <math>\n <semantics>\n <mrow>\n <mi>χ</mi>\n <mo>∈</mo>\n <msup>\n <mi>H</mi>\n <mn>1</mn>\n </msup>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>Σ</mi>\n <mi>h</mi>\n </msub>\n <mo>,</mo>\n <mi>Q</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\chi \\in H^1(\\Sigma _{h},\\mathbb {Q})$</annotation>\n </semantics></math> such that <math>\n <semantics>\n <msub>\n <mo>H</mo>\n <mi>χ</mi>\n </msub>\n <annotation>$\\operatorname{H}_\\chi$</annotation>\n </semantics></math> is not strictly plurisubharmonic. As part of this construction, we find an unbranched covering <math>\n <semantics>\n <mrow>\n <mi>π</mi>\n <mo>:</mo>\n <msub>\n <mi>Σ</mi>\n <mi>h</mi>\n </msub>\n <mo>→</mo>\n <msub>\n <mi>Σ</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>$\\pi:\\Sigma _{h}\\rightarrow \\Sigma _2$</annotation>\n </semantics></math> such that the subgroup of <math>\n <semantics>\n <mrow>\n <msub>\n <mi>H</mi>\n <mn>1</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>Σ</mi>\n <mi>h</mi>\n </msub>\n <mo>,</mo>\n <mi>Q</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$H_1(\\Sigma _{h},\\mathbb {Q})$</annotation>\n </semantics></math> generated by lifts of simple curves from <math>\n <semantics>\n <msub>\n <mi>Σ</mi>\n <mn>2</mn>\n </msub>\n <annotation>$\\Sigma _2$</annotation>\n </semantics></math> is strictly contained in <math>\n <semantics>\n <mrow>\n <msub>\n <mi>H</mi>\n <mn>1</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>Σ</mi>\n <mi>h</mi>\n </msub>\n <mo>,</mo>\n <mi>Q</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$H_1(\\Sigma _{h},\\mathbb {Q})$</annotation>\n </semantics></math>. Finally, combining the characterization theorem with the Riemann–Roch, and the Li–Yau [Invent. Math. 69 (1982), no. 2, 269–291] gonality estimate, we show that geometrically uniform covers of <math>\n <semantics>\n <msub>\n <mi>Σ</mi>\n <mi>g</mi>\n </msub>\n <annotation>$\\Sigma _g$</annotation>\n </semantics></math> satisfy the Putman–Wieland Conjecture about the induced Higher Prym representations. </p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let denote a rational cohomology class, and let denote its Hodge norm. We recover the result that is a plurisubharmonic function on the Teichmüller space , and characterize complex directions along which the complex Hessian of vanishes. Moreover, we find examples of such that is not strictly plurisubharmonic. As part of this construction, we find an unbranched covering such that the subgroup of generated by lifts of simple curves from is strictly contained in . Finally, combining the characterization theorem with the Riemann–Roch, and the Li–Yau [Invent. Math. 69 (1982), no. 2, 269–291] gonality estimate, we show that geometrically uniform covers of satisfy the Putman–Wieland Conjecture about the induced Higher Prym representations.