{"title":"klt 奇点考克斯环的迭代","authors":"Lukas Braun, Joaquín Moraga","doi":"10.1112/topo.12321","DOIUrl":null,"url":null,"abstract":"<p>In this article, we study the iteration of Cox rings of klt singularities (and Fano varieties) from a topological perspective. Given a klt singularity <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>,</mo>\n <mi>Δ</mi>\n <mo>;</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(X,\\Delta;x)$</annotation>\n </semantics></math>, we define the iteration of Cox rings of <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>,</mo>\n <mi>Δ</mi>\n <mo>;</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(X,\\Delta;x)$</annotation>\n </semantics></math>. The first result of this article is that the iteration of Cox rings <math>\n <semantics>\n <mrow>\n <msup>\n <mi>Cox</mi>\n <mrow>\n <mo>(</mo>\n <mi>k</mi>\n <mo>)</mo>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>,</mo>\n <mi>Δ</mi>\n <mo>;</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>${\\rm Cox}^{(k)}(X,\\Delta;x)$</annotation>\n </semantics></math> of a klt singularity stabilizes for <math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math> large enough. The second result is a boundedness one, we prove that for an <math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>-dimensional klt singularity <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>,</mo>\n <mi>Δ</mi>\n <mo>;</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(X,\\Delta;x)$</annotation>\n </semantics></math>, the iteration of Cox rings stabilizes for <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>⩾</mo>\n <mi>c</mi>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$k\\geqslant c(n)$</annotation>\n </semantics></math>, where <math>\n <semantics>\n <mrow>\n <mi>c</mi>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$c(n)$</annotation>\n </semantics></math> only depends on <math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>. Then, we use Cox rings to establish the existence of a simply connected factorial canonical (or <i>scfc</i>) cover of a klt singularity, with general fiber being an extension of a finite group by an algebraic torus. The scfc cover generalizes both the universal cover and the iteration of Cox rings. We prove that the scfc cover dominates any sequence of quasi-étale finite covers and reductive abelian quasi-torsors of the singularity. We characterize when the iteration of Cox rings is smooth and when the scfc cover is smooth. We also characterize when the spectrum of the iteration coincides with the scfc cover. Finally, we give a complete description of the regional fundamental group, the iteration of Cox rings, and the scfc cover of klt singularities of complexity one. Analogous versions of all our theorems are also proved for Fano-type morphisms. To extend the results to this setting, we show that the Jordan property holds for the regional fundamental group of Fano-type morphisms.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iteration of Cox rings of klt singularities\",\"authors\":\"Lukas Braun, Joaquín Moraga\",\"doi\":\"10.1112/topo.12321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, we study the iteration of Cox rings of klt singularities (and Fano varieties) from a topological perspective. Given a klt singularity <math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>,</mo>\\n <mi>Δ</mi>\\n <mo>;</mo>\\n <mi>x</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(X,\\\\Delta;x)$</annotation>\\n </semantics></math>, we define the iteration of Cox rings of <math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>,</mo>\\n <mi>Δ</mi>\\n <mo>;</mo>\\n <mi>x</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(X,\\\\Delta;x)$</annotation>\\n </semantics></math>. The first result of this article is that the iteration of Cox rings <math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>Cox</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>k</mi>\\n <mo>)</mo>\\n </mrow>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>,</mo>\\n <mi>Δ</mi>\\n <mo>;</mo>\\n <mi>x</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>${\\\\rm Cox}^{(k)}(X,\\\\Delta;x)$</annotation>\\n </semantics></math> of a klt singularity stabilizes for <math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math> large enough. The second result is a boundedness one, we prove that for an <math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math>-dimensional klt singularity <math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>,</mo>\\n <mi>Δ</mi>\\n <mo>;</mo>\\n <mi>x</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(X,\\\\Delta;x)$</annotation>\\n </semantics></math>, the iteration of Cox rings stabilizes for <math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>⩾</mo>\\n <mi>c</mi>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$k\\\\geqslant c(n)$</annotation>\\n </semantics></math>, where <math>\\n <semantics>\\n <mrow>\\n <mi>c</mi>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$c(n)$</annotation>\\n </semantics></math> only depends on <math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math>. Then, we use Cox rings to establish the existence of a simply connected factorial canonical (or <i>scfc</i>) cover of a klt singularity, with general fiber being an extension of a finite group by an algebraic torus. The scfc cover generalizes both the universal cover and the iteration of Cox rings. We prove that the scfc cover dominates any sequence of quasi-étale finite covers and reductive abelian quasi-torsors of the singularity. We characterize when the iteration of Cox rings is smooth and when the scfc cover is smooth. We also characterize when the spectrum of the iteration coincides with the scfc cover. Finally, we give a complete description of the regional fundamental group, the iteration of Cox rings, and the scfc cover of klt singularities of complexity one. Analogous versions of all our theorems are also proved for Fano-type morphisms. To extend the results to this setting, we show that the Jordan property holds for the regional fundamental group of Fano-type morphisms.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.12321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文从拓扑学的角度研究 klt 奇点(和法诺变种)的考克斯环的迭代。给定一个 klt 奇点 ( X , Δ ; x ) $(X,\Delta;x)$ ,我们定义 ( X , Δ ; x ) $(X,\Delta;x)$ 的迭代 Cox 环。本文的第一个结果是,当 k $k$ 足够大时,klt 奇点的迭代 Cox 环 Cox ( k ) ( X , Δ ; x ) ${rm Cox}^{(k)}(X,\Delta;x)$ 趋于稳定。第二个结果是有界性结果,我们证明对于一个 n $n$ -dimensional klt 奇异性 ( X , Δ ; x ) $(X,\Delta;x)$, Cox rings 的迭代在 k ⩾ c ( n ) $k\geqslant c(n)$ 时稳定,其中 c ( n ) $c(n)$ 只取决于 n $n$ 。然后,我们利用考克斯环来建立 klt 奇点的简单连接因子典范(或 scfc)盖的存在性,一般纤维是代数环对有限群的扩展。scfc 盖概括了通用盖和考克斯环的迭代。我们证明了 scfc 盖支配着奇点的任何准泰勒有限盖和还原性非良性准托马斯序列。我们描述了当考克斯环的迭代是光滑的和当 scfc 盖是光滑的时的特征。我们还描述了当迭代的谱与 scfc 盖重合时的特征。最后,我们给出了区域基群、考克斯环迭代和复杂度为一的 klt 奇点的 scfc 盖的完整描述。我们所有定理的类似版本也证明了法诺型变形。为了将结果扩展到这一环境,我们证明了乔丹性质在范诺型态的区域基群中成立。
In this article, we study the iteration of Cox rings of klt singularities (and Fano varieties) from a topological perspective. Given a klt singularity , we define the iteration of Cox rings of . The first result of this article is that the iteration of Cox rings of a klt singularity stabilizes for large enough. The second result is a boundedness one, we prove that for an -dimensional klt singularity , the iteration of Cox rings stabilizes for , where only depends on . Then, we use Cox rings to establish the existence of a simply connected factorial canonical (or scfc) cover of a klt singularity, with general fiber being an extension of a finite group by an algebraic torus. The scfc cover generalizes both the universal cover and the iteration of Cox rings. We prove that the scfc cover dominates any sequence of quasi-étale finite covers and reductive abelian quasi-torsors of the singularity. We characterize when the iteration of Cox rings is smooth and when the scfc cover is smooth. We also characterize when the spectrum of the iteration coincides with the scfc cover. Finally, we give a complete description of the regional fundamental group, the iteration of Cox rings, and the scfc cover of klt singularities of complexity one. Analogous versions of all our theorems are also proved for Fano-type morphisms. To extend the results to this setting, we show that the Jordan property holds for the regional fundamental group of Fano-type morphisms.