A new approach to twisted homological stability with applications to congruence subgroups

Pub Date : 2023-11-21 DOI:10.1112/topo.12316
Andrew Putman
{"title":"A new approach to twisted homological stability with applications to congruence subgroups","authors":"Andrew Putman","doi":"10.1112/topo.12316","DOIUrl":null,"url":null,"abstract":"<p>We introduce a new method for proving twisted homological stability, and use it to prove such results for symmetric groups and general linear groups. In addition to sometimes slightly improving the stable range given by the traditional method (due to Dwyer), it is easier to adapt to nonstandard situations. As an illustration of this, we generalize to <math>\n <semantics>\n <msub>\n <mo>GL</mo>\n <mi>n</mi>\n </msub>\n <annotation>$\\operatorname{GL}_n$</annotation>\n </semantics></math> of many rings <math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math> a theorem of Borel that says that passing from <math>\n <semantics>\n <msub>\n <mo>GL</mo>\n <mi>n</mi>\n </msub>\n <annotation>$\\operatorname{GL}_n$</annotation>\n </semantics></math> of a number ring to a finite-index subgroup does not change the rational cohomology. Charney proved this generalization for trivial coefficients, and we extend it to twisted coefficients.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We introduce a new method for proving twisted homological stability, and use it to prove such results for symmetric groups and general linear groups. In addition to sometimes slightly improving the stable range given by the traditional method (due to Dwyer), it is easier to adapt to nonstandard situations. As an illustration of this, we generalize to GL n $\operatorname{GL}_n$ of many rings R $R$ a theorem of Borel that says that passing from GL n $\operatorname{GL}_n$ of a number ring to a finite-index subgroup does not change the rational cohomology. Charney proved this generalization for trivial coefficients, and we extend it to twisted coefficients.

分享
查看原文
一种扭同调稳定性的新方法及其在同余子群上的应用
本文介绍了一种新的证明扭同调稳定性的方法,并用它证明了对称群和一般线性群的扭同调稳定性。除了有时会略微提高传统方法给出的稳定范围(由于Dwyer)外,它更容易适应非标准情况。为了说明这一点,我们将Borel的一个定理推广到GL n$ \operatorname{GL}_n$的多环R$ R$,该定理表明从一个数环的GL n$ \operatorname{GL}_n$传递到有限索引子群并不改变有理上同。Charney证明了对平凡系数的推广,我们把它推广到扭曲系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信