Algebraic theories of power operations

Pub Date : 2023-12-05 DOI:10.1112/topo.12318
William Balderrama
{"title":"Algebraic theories of power operations","authors":"William Balderrama","doi":"10.1112/topo.12318","DOIUrl":null,"url":null,"abstract":"<p>We develop and exposit some general algebra useful for working with certain algebraic structures that arise in stable homotopy theory, such as those encoding well-behaved theories of power operations for <math>\n <semantics>\n <msub>\n <mi>E</mi>\n <mi>∞</mi>\n </msub>\n <annotation>$\\mathbb {E}_\\infty$</annotation>\n </semantics></math> ring spectra. In particular, we consider Quillen cohomology in the context of algebras over algebraic theories, plethories, and Koszul resolutions for algebras over additive theories. By combining this general algebra with obstruction-theoretic machinery, we obtain tools for computing with <math>\n <semantics>\n <msub>\n <mi>E</mi>\n <mi>∞</mi>\n </msub>\n <annotation>$\\mathbb {E}_\\infty$</annotation>\n </semantics></math> algebras over <math>\n <semantics>\n <msub>\n <mi>F</mi>\n <mi>p</mi>\n </msub>\n <annotation>$\\mathbb {F}_p$</annotation>\n </semantics></math> and over Lubin–Tate spectra. As an application, we demonstrate the existence of <math>\n <semantics>\n <msub>\n <mi>E</mi>\n <mi>∞</mi>\n </msub>\n <annotation>$\\mathbb {E}_\\infty$</annotation>\n </semantics></math> periodic complex orientations at heights <math>\n <semantics>\n <mrow>\n <mi>h</mi>\n <mo>⩽</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$h\\leqslant 2$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12318","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We develop and exposit some general algebra useful for working with certain algebraic structures that arise in stable homotopy theory, such as those encoding well-behaved theories of power operations for E $\mathbb {E}_\infty$ ring spectra. In particular, we consider Quillen cohomology in the context of algebras over algebraic theories, plethories, and Koszul resolutions for algebras over additive theories. By combining this general algebra with obstruction-theoretic machinery, we obtain tools for computing with E $\mathbb {E}_\infty$ algebras over F p $\mathbb {F}_p$ and over Lubin–Tate spectra. As an application, we demonstrate the existence of E $\mathbb {E}_\infty$ periodic complex orientations at heights h 2 $h\leqslant 2$ .

Abstract Image

分享
查看原文
幂运算的代数理论
我们开发并展示了一些一般代数,用于处理稳定同伦理论中出现的某些代数结构,例如编码E∞$\mathbb {E}_\infty$环谱的幂运算的良好理论。特别地,我们考虑了代数在代数理论上的Quillen上同调,完备论,以及代数在加性理论上的Koszul决议。通过将这种一般代数与阻碍理论机制相结合,我们获得了F p $\mathbb {F}_p$和Lubin-Tate谱上的E∞$\mathbb {E}_\infty$代数的计算工具。作为应用,我们证明了在高度h≥2 $h\leqslant 2$处E∞$\mathbb {E}_\infty$周期复取向的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信