{"title":"动机庞特里亚金类和双曲方向","authors":"Olivier Haution","doi":"10.1112/topo.12317","DOIUrl":null,"url":null,"abstract":"<p>We introduce the notion of hyperbolic orientation of a motivic ring spectrum, which generalises the various existing notions of orientation (by the groups <math>\n <semantics>\n <mo>GL</mo>\n <annotation>$\\operatorname{GL}$</annotation>\n </semantics></math>, <math>\n <semantics>\n <msup>\n <mo>SL</mo>\n <mi>c</mi>\n </msup>\n <annotation>$\\operatorname{SL}^c$</annotation>\n </semantics></math>, <math>\n <semantics>\n <mo>SL</mo>\n <annotation>$\\operatorname{SL}$</annotation>\n </semantics></math>, <math>\n <semantics>\n <mo>Sp</mo>\n <annotation>$\\operatorname{Sp}$</annotation>\n </semantics></math>). We show that hyperbolic orientations of <math>\n <semantics>\n <mi>η</mi>\n <annotation>$\\eta$</annotation>\n </semantics></math>-periodic ring spectra correspond to theories of Pontryagin classes, much in the same way that <math>\n <semantics>\n <mo>GL</mo>\n <annotation>$\\operatorname{GL}$</annotation>\n </semantics></math>-orientations of arbitrary ring spectra correspond to theories of Chern classes. We prove that <math>\n <semantics>\n <mi>η</mi>\n <annotation>$\\eta$</annotation>\n </semantics></math>-periodic hyperbolically oriented cohomology theories do not admit further characteristic classes for vector bundles, by computing the cohomology of the étale classifying space <math>\n <semantics>\n <msub>\n <mo>BGL</mo>\n <mi>n</mi>\n </msub>\n <annotation>$\\operatorname{BGL}_n$</annotation>\n </semantics></math>. Finally, we construct the universal hyperbolically oriented <math>\n <semantics>\n <mi>η</mi>\n <annotation>$\\eta$</annotation>\n </semantics></math>-periodic commutative motivic ring spectrum, an analogue of Voevodsky's cobordism spectrum <math>\n <semantics>\n <mo>MGL</mo>\n <annotation>$\\operatorname{MGL}$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12317","citationCount":"2","resultStr":"{\"title\":\"Motivic Pontryagin classes and hyperbolic orientations\",\"authors\":\"Olivier Haution\",\"doi\":\"10.1112/topo.12317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce the notion of hyperbolic orientation of a motivic ring spectrum, which generalises the various existing notions of orientation (by the groups <math>\\n <semantics>\\n <mo>GL</mo>\\n <annotation>$\\\\operatorname{GL}$</annotation>\\n </semantics></math>, <math>\\n <semantics>\\n <msup>\\n <mo>SL</mo>\\n <mi>c</mi>\\n </msup>\\n <annotation>$\\\\operatorname{SL}^c$</annotation>\\n </semantics></math>, <math>\\n <semantics>\\n <mo>SL</mo>\\n <annotation>$\\\\operatorname{SL}$</annotation>\\n </semantics></math>, <math>\\n <semantics>\\n <mo>Sp</mo>\\n <annotation>$\\\\operatorname{Sp}$</annotation>\\n </semantics></math>). We show that hyperbolic orientations of <math>\\n <semantics>\\n <mi>η</mi>\\n <annotation>$\\\\eta$</annotation>\\n </semantics></math>-periodic ring spectra correspond to theories of Pontryagin classes, much in the same way that <math>\\n <semantics>\\n <mo>GL</mo>\\n <annotation>$\\\\operatorname{GL}$</annotation>\\n </semantics></math>-orientations of arbitrary ring spectra correspond to theories of Chern classes. We prove that <math>\\n <semantics>\\n <mi>η</mi>\\n <annotation>$\\\\eta$</annotation>\\n </semantics></math>-periodic hyperbolically oriented cohomology theories do not admit further characteristic classes for vector bundles, by computing the cohomology of the étale classifying space <math>\\n <semantics>\\n <msub>\\n <mo>BGL</mo>\\n <mi>n</mi>\\n </msub>\\n <annotation>$\\\\operatorname{BGL}_n$</annotation>\\n </semantics></math>. Finally, we construct the universal hyperbolically oriented <math>\\n <semantics>\\n <mi>η</mi>\\n <annotation>$\\\\eta$</annotation>\\n </semantics></math>-periodic commutative motivic ring spectrum, an analogue of Voevodsky's cobordism spectrum <math>\\n <semantics>\\n <mo>MGL</mo>\\n <annotation>$\\\\operatorname{MGL}$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12317\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.12317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Motivic Pontryagin classes and hyperbolic orientations
We introduce the notion of hyperbolic orientation of a motivic ring spectrum, which generalises the various existing notions of orientation (by the groups , , , ). We show that hyperbolic orientations of -periodic ring spectra correspond to theories of Pontryagin classes, much in the same way that -orientations of arbitrary ring spectra correspond to theories of Chern classes. We prove that -periodic hyperbolically oriented cohomology theories do not admit further characteristic classes for vector bundles, by computing the cohomology of the étale classifying space . Finally, we construct the universal hyperbolically oriented -periodic commutative motivic ring spectrum, an analogue of Voevodsky's cobordism spectrum .