动机庞特里亚金类和双曲方向

Pub Date : 2023-11-21 DOI:10.1112/topo.12317
Olivier Haution
{"title":"动机庞特里亚金类和双曲方向","authors":"Olivier Haution","doi":"10.1112/topo.12317","DOIUrl":null,"url":null,"abstract":"<p>We introduce the notion of hyperbolic orientation of a motivic ring spectrum, which generalises the various existing notions of orientation (by the groups <math>\n <semantics>\n <mo>GL</mo>\n <annotation>$\\operatorname{GL}$</annotation>\n </semantics></math>, <math>\n <semantics>\n <msup>\n <mo>SL</mo>\n <mi>c</mi>\n </msup>\n <annotation>$\\operatorname{SL}^c$</annotation>\n </semantics></math>, <math>\n <semantics>\n <mo>SL</mo>\n <annotation>$\\operatorname{SL}$</annotation>\n </semantics></math>, <math>\n <semantics>\n <mo>Sp</mo>\n <annotation>$\\operatorname{Sp}$</annotation>\n </semantics></math>). We show that hyperbolic orientations of <math>\n <semantics>\n <mi>η</mi>\n <annotation>$\\eta$</annotation>\n </semantics></math>-periodic ring spectra correspond to theories of Pontryagin classes, much in the same way that <math>\n <semantics>\n <mo>GL</mo>\n <annotation>$\\operatorname{GL}$</annotation>\n </semantics></math>-orientations of arbitrary ring spectra correspond to theories of Chern classes. We prove that <math>\n <semantics>\n <mi>η</mi>\n <annotation>$\\eta$</annotation>\n </semantics></math>-periodic hyperbolically oriented cohomology theories do not admit further characteristic classes for vector bundles, by computing the cohomology of the étale classifying space <math>\n <semantics>\n <msub>\n <mo>BGL</mo>\n <mi>n</mi>\n </msub>\n <annotation>$\\operatorname{BGL}_n$</annotation>\n </semantics></math>. Finally, we construct the universal hyperbolically oriented <math>\n <semantics>\n <mi>η</mi>\n <annotation>$\\eta$</annotation>\n </semantics></math>-periodic commutative motivic ring spectrum, an analogue of Voevodsky's cobordism spectrum <math>\n <semantics>\n <mo>MGL</mo>\n <annotation>$\\operatorname{MGL}$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12317","citationCount":"2","resultStr":"{\"title\":\"Motivic Pontryagin classes and hyperbolic orientations\",\"authors\":\"Olivier Haution\",\"doi\":\"10.1112/topo.12317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce the notion of hyperbolic orientation of a motivic ring spectrum, which generalises the various existing notions of orientation (by the groups <math>\\n <semantics>\\n <mo>GL</mo>\\n <annotation>$\\\\operatorname{GL}$</annotation>\\n </semantics></math>, <math>\\n <semantics>\\n <msup>\\n <mo>SL</mo>\\n <mi>c</mi>\\n </msup>\\n <annotation>$\\\\operatorname{SL}^c$</annotation>\\n </semantics></math>, <math>\\n <semantics>\\n <mo>SL</mo>\\n <annotation>$\\\\operatorname{SL}$</annotation>\\n </semantics></math>, <math>\\n <semantics>\\n <mo>Sp</mo>\\n <annotation>$\\\\operatorname{Sp}$</annotation>\\n </semantics></math>). We show that hyperbolic orientations of <math>\\n <semantics>\\n <mi>η</mi>\\n <annotation>$\\\\eta$</annotation>\\n </semantics></math>-periodic ring spectra correspond to theories of Pontryagin classes, much in the same way that <math>\\n <semantics>\\n <mo>GL</mo>\\n <annotation>$\\\\operatorname{GL}$</annotation>\\n </semantics></math>-orientations of arbitrary ring spectra correspond to theories of Chern classes. We prove that <math>\\n <semantics>\\n <mi>η</mi>\\n <annotation>$\\\\eta$</annotation>\\n </semantics></math>-periodic hyperbolically oriented cohomology theories do not admit further characteristic classes for vector bundles, by computing the cohomology of the étale classifying space <math>\\n <semantics>\\n <msub>\\n <mo>BGL</mo>\\n <mi>n</mi>\\n </msub>\\n <annotation>$\\\\operatorname{BGL}_n$</annotation>\\n </semantics></math>. Finally, we construct the universal hyperbolically oriented <math>\\n <semantics>\\n <mi>η</mi>\\n <annotation>$\\\\eta$</annotation>\\n </semantics></math>-periodic commutative motivic ring spectrum, an analogue of Voevodsky's cobordism spectrum <math>\\n <semantics>\\n <mo>MGL</mo>\\n <annotation>$\\\\operatorname{MGL}$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12317\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.12317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们引入了动机环谱的双曲取向的概念,它推广了现有的各种取向的概念(通过群GL $\operatorname{GL}$, SL $\operatorname{SL}^c$, SL $\operatorname{SL}$,Sp $\operatorname{Sp}$)。我们证明了η $\eta$ -周期环谱的双曲取向对应于Pontryagin类理论,就像GL $\operatorname{GL}$ -任意环谱的双曲取向对应于Chern类理论一样。通过计算分类空间BGL n$ \operatorname{BGL}_n$的上同调性,证明了η $\eta$ -周期双曲取向上同调理论不允许向量束有进一步的特征类。最后,我们构造了一个与Voevodsky协协谱MGL $\operatorname{MGL}$类似的泛双曲导向η $\eta$ -周期交换动机环谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Motivic Pontryagin classes and hyperbolic orientations

分享
查看原文
Motivic Pontryagin classes and hyperbolic orientations

We introduce the notion of hyperbolic orientation of a motivic ring spectrum, which generalises the various existing notions of orientation (by the groups GL $\operatorname{GL}$ , SL c $\operatorname{SL}^c$ , SL $\operatorname{SL}$ , Sp $\operatorname{Sp}$ ). We show that hyperbolic orientations of η $\eta$ -periodic ring spectra correspond to theories of Pontryagin classes, much in the same way that GL $\operatorname{GL}$ -orientations of arbitrary ring spectra correspond to theories of Chern classes. We prove that η $\eta$ -periodic hyperbolically oriented cohomology theories do not admit further characteristic classes for vector bundles, by computing the cohomology of the étale classifying space BGL n $\operatorname{BGL}_n$ . Finally, we construct the universal hyperbolically oriented η $\eta$ -periodic commutative motivic ring spectrum, an analogue of Voevodsky's cobordism spectrum MGL $\operatorname{MGL}$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信