圆的实现问题的下界

Pub Date : 2023-11-28 DOI:10.1112/topo.12320
Vasilii Rozhdestvenskii
{"title":"圆的实现问题的下界","authors":"Vasilii Rozhdestvenskii","doi":"10.1112/topo.12320","DOIUrl":null,"url":null,"abstract":"<p>We consider the classical Steenrod problem on realization of integral homology classes by continuous images of smooth oriented manifolds. Let <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$k(n)$</annotation>\n </semantics></math> be the smallest positive integer such that any integral <math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>-dimensional homology class becomes realizable in the sense of Steenrod after multiplication by <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$k(n)$</annotation>\n </semantics></math>. The best known upper bound for <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$k(n)$</annotation>\n </semantics></math> was obtained independently by Brumfiel and Buchstaber in 1969. All known lower bounds for <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$k(n)$</annotation>\n </semantics></math> were very far from this upper bound. The main result of this paper is a new lower bound for <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$k(n)$</annotation>\n </semantics></math> that is asymptotically equivalent to the Brumfiel–Buchstaber upper bound (in the logarithmic scale). For <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>&lt;</mo>\n <mn>24</mn>\n </mrow>\n <annotation>$n&lt;24$</annotation>\n </semantics></math>, we prove that our lower bound is exact. Also, we obtain analogous results for the case of realization of integral homology classes by continuous images of smooth stably complex manifolds.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A lower bound in the problem of realization of cycles\",\"authors\":\"Vasilii Rozhdestvenskii\",\"doi\":\"10.1112/topo.12320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the classical Steenrod problem on realization of integral homology classes by continuous images of smooth oriented manifolds. Let <math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$k(n)$</annotation>\\n </semantics></math> be the smallest positive integer such that any integral <math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math>-dimensional homology class becomes realizable in the sense of Steenrod after multiplication by <math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$k(n)$</annotation>\\n </semantics></math>. The best known upper bound for <math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$k(n)$</annotation>\\n </semantics></math> was obtained independently by Brumfiel and Buchstaber in 1969. All known lower bounds for <math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$k(n)$</annotation>\\n </semantics></math> were very far from this upper bound. The main result of this paper is a new lower bound for <math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$k(n)$</annotation>\\n </semantics></math> that is asymptotically equivalent to the Brumfiel–Buchstaber upper bound (in the logarithmic scale). For <math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>&lt;</mo>\\n <mn>24</mn>\\n </mrow>\\n <annotation>$n&lt;24$</annotation>\\n </semantics></math>, we prove that our lower bound is exact. Also, we obtain analogous results for the case of realization of integral homology classes by continuous images of smooth stably complex manifolds.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.12320\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究光滑定向流形连续像实现整同调类的经典Steenrod问题。设k(n)$ k(n)$是最小的正整数,使得任何积分n$ n$维的同调类在乘以k(n)后都可以在Steenrod意义上实现$ k (n )$ .k(n)$ k(n)$的上界是由brunfield和Buchstaber在1969年独立得到的。所有已知的k(n)$ k(n)$的下界都离这个上界很远。本文的主要结果是k(n)$ k(n)$的一个新的下界,它渐近地等价于brumfield - buchstaber上界(在对数尺度上)。对于n <24$ n<24$,我们证明下界是精确的。在光滑稳定复流形的连续像实现整同调类的情况下,也得到了类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A lower bound in the problem of realization of cycles

We consider the classical Steenrod problem on realization of integral homology classes by continuous images of smooth oriented manifolds. Let k ( n ) $k(n)$ be the smallest positive integer such that any integral n $n$ -dimensional homology class becomes realizable in the sense of Steenrod after multiplication by  k ( n ) $k(n)$ . The best known upper bound for k ( n ) $k(n)$ was obtained independently by Brumfiel and Buchstaber in 1969. All known lower bounds for k ( n ) $k(n)$ were very far from this upper bound. The main result of this paper is a new lower bound for k ( n ) $k(n)$ that is asymptotically equivalent to the Brumfiel–Buchstaber upper bound (in the logarithmic scale). For n < 24 $n<24$ , we prove that our lower bound is exact. Also, we obtain analogous results for the case of realization of integral homology classes by continuous images of smooth stably complex manifolds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信