Brane structures in microlocal sheaf theory

IF 0.8 2区 数学 Q2 MATHEMATICS
Xin Jin, David Treumann
{"title":"Brane structures in microlocal sheaf theory","authors":"Xin Jin,&nbsp;David Treumann","doi":"10.1112/topo.12325","DOIUrl":null,"url":null,"abstract":"<p>Let <math>\n <semantics>\n <mi>L</mi>\n <annotation>$L$</annotation>\n </semantics></math> be an exact Lagrangian submanifold of a cotangent bundle <math>\n <semantics>\n <mrow>\n <msup>\n <mi>T</mi>\n <mo>∗</mo>\n </msup>\n <mi>M</mi>\n </mrow>\n <annotation>$T^* M$</annotation>\n </semantics></math>, asymptotic to a Legendrian submanifold <math>\n <semantics>\n <mrow>\n <mi>Λ</mi>\n <mo>⊂</mo>\n <msup>\n <mi>T</mi>\n <mi>∞</mi>\n </msup>\n <mi>M</mi>\n </mrow>\n <annotation>$\\Lambda \\subset T^{\\infty } M$</annotation>\n </semantics></math>. We study a locally constant sheaf of <math>\n <semantics>\n <mi>∞</mi>\n <annotation>$\\infty$</annotation>\n </semantics></math>-categories on <math>\n <semantics>\n <mi>L</mi>\n <annotation>$L$</annotation>\n </semantics></math>, called the sheaf of brane structures or <math>\n <semantics>\n <msub>\n <mi>Brane</mi>\n <mi>L</mi>\n </msub>\n <annotation>$\\mathrm{Brane}_L$</annotation>\n </semantics></math>. Its fiber is the <math>\n <semantics>\n <mi>∞</mi>\n <annotation>$\\infty$</annotation>\n </semantics></math>-category of spectra, and we construct a Hamiltonian invariant, fully faithful functor from <math>\n <semantics>\n <mrow>\n <mi>Γ</mi>\n <mo>(</mo>\n <mi>L</mi>\n <mo>,</mo>\n <msub>\n <mi>Brane</mi>\n <mi>L</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$\\Gamma (L,\\mathrm{Brane}_L)$</annotation>\n </semantics></math> to the <math>\n <semantics>\n <mi>∞</mi>\n <annotation>$\\infty$</annotation>\n </semantics></math>-category of sheaves of spectra on <math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> with singular support in <math>\n <semantics>\n <mi>Λ</mi>\n <annotation>$\\Lambda$</annotation>\n </semantics></math>.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12325","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12325","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let L $L$ be an exact Lagrangian submanifold of a cotangent bundle T M $T^* M$ , asymptotic to a Legendrian submanifold Λ T M $\Lambda \subset T^{\infty } M$ . We study a locally constant sheaf of $\infty$ -categories on L $L$ , called the sheaf of brane structures or Brane L $\mathrm{Brane}_L$ . Its fiber is the $\infty$ -category of spectra, and we construct a Hamiltonian invariant, fully faithful functor from Γ ( L , Brane L ) $\Gamma (L,\mathrm{Brane}_L)$ to the $\infty$ -category of sheaves of spectra on M $M$ with singular support in Λ $\Lambda$ .

Abstract Image

微局域剪切理论中的线性结构
让 L$L$ 成为共切束 T∗M$T^* M$ 的精确拉格朗日子平面,渐近于 Legendrian 子平面Λ⊂T∞M$\Lambda \subset T^{\infty } M$ 。M$.我们研究的是 L$L$ 上的∞$\infty$-类的局部常数层,称为 "蝶恋花结构层 "或 "BraneL$\mathrm{Brane}_L$"。它的纤维是光谱的∞$infty$类别,我们构建了一个从Γ(L,BraneL)$\Gamma (L,\mathrm{Brane}_L)$到 M$M$ 上具有Λ$Lambda$奇异支持的光谱剪切的∞$infty$类别的哈密顿不变全忠函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Topology
Journal of Topology 数学-数学
CiteScore
2.00
自引率
9.10%
发文量
62
审稿时长
>12 weeks
期刊介绍: The Journal of Topology publishes papers of high quality and significance in topology, geometry and adjacent areas of mathematics. Interesting, important and often unexpected links connect topology and geometry with many other parts of mathematics, and the editors welcome submissions on exciting new advances concerning such links, as well as those in the core subject areas of the journal. The Journal of Topology was founded in 2008. It is published quarterly with articles published individually online prior to appearing in a printed issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信