Brane structures in microlocal sheaf theory

Pub Date : 2024-03-14 DOI:10.1112/topo.12325
Xin Jin, David Treumann
{"title":"Brane structures in microlocal sheaf theory","authors":"Xin Jin,&nbsp;David Treumann","doi":"10.1112/topo.12325","DOIUrl":null,"url":null,"abstract":"<p>Let <math>\n <semantics>\n <mi>L</mi>\n <annotation>$L$</annotation>\n </semantics></math> be an exact Lagrangian submanifold of a cotangent bundle <math>\n <semantics>\n <mrow>\n <msup>\n <mi>T</mi>\n <mo>∗</mo>\n </msup>\n <mi>M</mi>\n </mrow>\n <annotation>$T^* M$</annotation>\n </semantics></math>, asymptotic to a Legendrian submanifold <math>\n <semantics>\n <mrow>\n <mi>Λ</mi>\n <mo>⊂</mo>\n <msup>\n <mi>T</mi>\n <mi>∞</mi>\n </msup>\n <mi>M</mi>\n </mrow>\n <annotation>$\\Lambda \\subset T^{\\infty } M$</annotation>\n </semantics></math>. We study a locally constant sheaf of <math>\n <semantics>\n <mi>∞</mi>\n <annotation>$\\infty$</annotation>\n </semantics></math>-categories on <math>\n <semantics>\n <mi>L</mi>\n <annotation>$L$</annotation>\n </semantics></math>, called the sheaf of brane structures or <math>\n <semantics>\n <msub>\n <mi>Brane</mi>\n <mi>L</mi>\n </msub>\n <annotation>$\\mathrm{Brane}_L$</annotation>\n </semantics></math>. Its fiber is the <math>\n <semantics>\n <mi>∞</mi>\n <annotation>$\\infty$</annotation>\n </semantics></math>-category of spectra, and we construct a Hamiltonian invariant, fully faithful functor from <math>\n <semantics>\n <mrow>\n <mi>Γ</mi>\n <mo>(</mo>\n <mi>L</mi>\n <mo>,</mo>\n <msub>\n <mi>Brane</mi>\n <mi>L</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$\\Gamma (L,\\mathrm{Brane}_L)$</annotation>\n </semantics></math> to the <math>\n <semantics>\n <mi>∞</mi>\n <annotation>$\\infty$</annotation>\n </semantics></math>-category of sheaves of spectra on <math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> with singular support in <math>\n <semantics>\n <mi>Λ</mi>\n <annotation>$\\Lambda$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12325","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let L $L$ be an exact Lagrangian submanifold of a cotangent bundle T M $T^* M$ , asymptotic to a Legendrian submanifold Λ T M $\Lambda \subset T^{\infty } M$ . We study a locally constant sheaf of $\infty$ -categories on L $L$ , called the sheaf of brane structures or Brane L $\mathrm{Brane}_L$ . Its fiber is the $\infty$ -category of spectra, and we construct a Hamiltonian invariant, fully faithful functor from Γ ( L , Brane L ) $\Gamma (L,\mathrm{Brane}_L)$ to the $\infty$ -category of sheaves of spectra on M $M$ with singular support in Λ $\Lambda$ .

Abstract Image

分享
查看原文
微局域剪切理论中的线性结构
让 L$L$ 成为共切束 T∗M$T^* M$ 的精确拉格朗日子平面,渐近于 Legendrian 子平面Λ⊂T∞M$\Lambda \subset T^{\infty } M$ 。M$.我们研究的是 L$L$ 上的∞$\infty$-类的局部常数层,称为 "蝶恋花结构层 "或 "BraneL$\mathrm{Brane}_L$"。它的纤维是光谱的∞$infty$类别,我们构建了一个从Γ(L,BraneL)$\Gamma (L,\mathrm{Brane}_L)$到 M$M$ 上具有Λ$Lambda$奇异支持的光谱剪切的∞$infty$类别的哈密顿不变全忠函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信