{"title":"可逆拓扑场论","authors":"Christopher Schommer-Pries","doi":"10.1112/topo.12335","DOIUrl":null,"url":null,"abstract":"<p>A <span></span><math>\n <semantics>\n <mi>d</mi>\n <annotation>$d$</annotation>\n </semantics></math>-dimensional invertible topological field theory (TFT) is a functor from the symmetric monoidal <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>∞</mi>\n <mo>,</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\infty,n)$</annotation>\n </semantics></math>-category of <span></span><math>\n <semantics>\n <mi>d</mi>\n <annotation>$d$</annotation>\n </semantics></math>-bordisms (embedded into <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>∞</mi>\n </msup>\n <annotation>$\\mathbb {R}^\\infty$</annotation>\n </semantics></math> and equipped with a tangential <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>,</mo>\n <mi>ξ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(X,\\xi)$</annotation>\n </semantics></math>-structure) that lands in the Picard subcategory of the target symmetric monoidal <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>∞</mi>\n <mo>,</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\infty,n)$</annotation>\n </semantics></math>-category. We classify these field theories in terms of the cohomology of the <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>−</mo>\n <mi>d</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(n-d)$</annotation>\n </semantics></math>-connective cover of the Madsen–Tillmann spectrum. This is accomplished by identifying the classifying space of the <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>∞</mi>\n <mo>,</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\infty,n)$</annotation>\n </semantics></math>-category of bordisms with <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>Ω</mi>\n <mrow>\n <mi>∞</mi>\n <mo>−</mo>\n <mi>n</mi>\n </mrow>\n </msup>\n <mi>M</mi>\n <mi>T</mi>\n <mi>ξ</mi>\n </mrow>\n <annotation>$\\Omega ^{\\infty -n}MT\\xi$</annotation>\n </semantics></math> as an <span></span><math>\n <semantics>\n <msub>\n <mi>E</mi>\n <mi>∞</mi>\n </msub>\n <annotation>$E_\\infty$</annotation>\n </semantics></math>-space. This generalizes the celebrated result of Galatius–Madsen–Tillmann–Weiss (Acta Math. <b>202</b> (2009), no. 2, 195–239) in the case <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$n=1$</annotation>\n </semantics></math>, and of Bökstedt–Madsen (An alpine expedition through algebraic topology, vol. 617, Contemp. Math., Amer. Math. Soc., Providence, RI, 2014, pp. 39–80) in the <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>-uple case. We also obtain results for the <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>∞</mi>\n <mo>,</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\infty,n)$</annotation>\n </semantics></math>-category of <span></span><math>\n <semantics>\n <mi>d</mi>\n <annotation>$d$</annotation>\n </semantics></math>-bordisms embedding into a fixed ambient manifold <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math>, generalizing results of Randal–Williams (Int. Math. Res. Not. IMRN <b>2011</b> (2011), no. 3, 572–608) in the case <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$n=1$</annotation>\n </semantics></math>. We give two applications: (1) we completely compute all extended and partially extended invertible TFTs with target a certain category of <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>-vector spaces (for <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>⩽</mo>\n <mn>4</mn>\n </mrow>\n <annotation>$n \\leqslant 4$</annotation>\n </semantics></math>), and (2) we use this to give a negative answer to a question raised by Gilmer and Masbaum (Forum Math. <b>25</b> (2013), no. 5, 1067–1106. arXiv:0912.4706).</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Invertible topological field theories\",\"authors\":\"Christopher Schommer-Pries\",\"doi\":\"10.1112/topo.12335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A <span></span><math>\\n <semantics>\\n <mi>d</mi>\\n <annotation>$d$</annotation>\\n </semantics></math>-dimensional invertible topological field theory (TFT) is a functor from the symmetric monoidal <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>∞</mi>\\n <mo>,</mo>\\n <mi>n</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(\\\\infty,n)$</annotation>\\n </semantics></math>-category of <span></span><math>\\n <semantics>\\n <mi>d</mi>\\n <annotation>$d$</annotation>\\n </semantics></math>-bordisms (embedded into <span></span><math>\\n <semantics>\\n <msup>\\n <mi>R</mi>\\n <mi>∞</mi>\\n </msup>\\n <annotation>$\\\\mathbb {R}^\\\\infty$</annotation>\\n </semantics></math> and equipped with a tangential <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>,</mo>\\n <mi>ξ</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(X,\\\\xi)$</annotation>\\n </semantics></math>-structure) that lands in the Picard subcategory of the target symmetric monoidal <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>∞</mi>\\n <mo>,</mo>\\n <mi>n</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(\\\\infty,n)$</annotation>\\n </semantics></math>-category. We classify these field theories in terms of the cohomology of the <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mi>d</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(n-d)$</annotation>\\n </semantics></math>-connective cover of the Madsen–Tillmann spectrum. This is accomplished by identifying the classifying space of the <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>∞</mi>\\n <mo>,</mo>\\n <mi>n</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(\\\\infty,n)$</annotation>\\n </semantics></math>-category of bordisms with <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>Ω</mi>\\n <mrow>\\n <mi>∞</mi>\\n <mo>−</mo>\\n <mi>n</mi>\\n </mrow>\\n </msup>\\n <mi>M</mi>\\n <mi>T</mi>\\n <mi>ξ</mi>\\n </mrow>\\n <annotation>$\\\\Omega ^{\\\\infty -n}MT\\\\xi$</annotation>\\n </semantics></math> as an <span></span><math>\\n <semantics>\\n <msub>\\n <mi>E</mi>\\n <mi>∞</mi>\\n </msub>\\n <annotation>$E_\\\\infty$</annotation>\\n </semantics></math>-space. This generalizes the celebrated result of Galatius–Madsen–Tillmann–Weiss (Acta Math. <b>202</b> (2009), no. 2, 195–239) in the case <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>=</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$n=1$</annotation>\\n </semantics></math>, and of Bökstedt–Madsen (An alpine expedition through algebraic topology, vol. 617, Contemp. Math., Amer. Math. Soc., Providence, RI, 2014, pp. 39–80) in the <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math>-uple case. We also obtain results for the <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>∞</mi>\\n <mo>,</mo>\\n <mi>n</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(\\\\infty,n)$</annotation>\\n </semantics></math>-category of <span></span><math>\\n <semantics>\\n <mi>d</mi>\\n <annotation>$d$</annotation>\\n </semantics></math>-bordisms embedding into a fixed ambient manifold <span></span><math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$M$</annotation>\\n </semantics></math>, generalizing results of Randal–Williams (Int. Math. Res. Not. IMRN <b>2011</b> (2011), no. 3, 572–608) in the case <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>=</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$n=1$</annotation>\\n </semantics></math>. We give two applications: (1) we completely compute all extended and partially extended invertible TFTs with target a certain category of <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math>-vector spaces (for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>⩽</mo>\\n <mn>4</mn>\\n </mrow>\\n <annotation>$n \\\\leqslant 4$</annotation>\\n </semantics></math>), and (2) we use this to give a negative answer to a question raised by Gilmer and Masbaum (Forum Math. <b>25</b> (2013), no. 5, 1067–1106. arXiv:0912.4706).</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.12335\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
一个 d $d $ -d 维可逆拓扑场论(TFT)是一个来自对称一元 ( ∞ , n ) $(\infty,n)$ -category of d $d $ -bordisms 的函子(嵌入到 R ∞ $\mathbb {R}^\infty$ 并配备一个切向 ( X 、 ξ ) $(X,\xi)$结构),落在目标对称一元 ( ∞ , n ) $(\infty,n)$类别的皮卡尔子类别中。我们根据马德森-蒂尔曼谱的( n - d ) $(n-d)$-康盖的同调对这些场论进行分类。这是通过将(∞ , n ) $(\infty,n)$ -category of bordisms 的分类空间与 Ω ∞ - n M T ξ $\Omega ^{\infty -n}MT\xi$ 识别为 E ∞ $E_\infty$ -space 来实现的。这概括了加拉蒂乌斯-马德森-蒂尔曼-魏斯的著名成果(《数学法学》,第 202 卷(2009 年),第 2 期)。202 (2009), no. 2, 195-239) 在 n = 1 $n=1$ 情况下的著名结果,以及伯克斯特-马德森 (Bökstedt-Madsen) (An alpine expedition through algebraic topology, vol. 617, Contemp.Math.Math.Soc., Providence, RI, 2014, pp.我们还得到了嵌入到固定环境流形 M $M$ 的 d $d $ 边界的 ( ∞ , n ) $(\infty,n)$ 类别的结果,概括了 Randal-Williams 的结果(Int.Math.Res.IMRN 2011 (2011), no.3,572-608)在 n = 1 $n=1$ 情况下的结果。我们给出了两个应用:(1)我们完全计算了所有扩展和部分扩展的可反转 TFT,其目标是某类 n $n$ - 向量空间(对于 n ⩽ 4 $n \leqslant 4$ );(2)我们利用这一点给出了吉尔默和马斯鲍姆(Forum Math.25 (2013), no.arXiv:0912.4706).
A -dimensional invertible topological field theory (TFT) is a functor from the symmetric monoidal -category of -bordisms (embedded into and equipped with a tangential -structure) that lands in the Picard subcategory of the target symmetric monoidal -category. We classify these field theories in terms of the cohomology of the -connective cover of the Madsen–Tillmann spectrum. This is accomplished by identifying the classifying space of the -category of bordisms with as an -space. This generalizes the celebrated result of Galatius–Madsen–Tillmann–Weiss (Acta Math. 202 (2009), no. 2, 195–239) in the case , and of Bökstedt–Madsen (An alpine expedition through algebraic topology, vol. 617, Contemp. Math., Amer. Math. Soc., Providence, RI, 2014, pp. 39–80) in the -uple case. We also obtain results for the -category of -bordisms embedding into a fixed ambient manifold , generalizing results of Randal–Williams (Int. Math. Res. Not. IMRN 2011 (2011), no. 3, 572–608) in the case . We give two applications: (1) we completely compute all extended and partially extended invertible TFTs with target a certain category of -vector spaces (for ), and (2) we use this to give a negative answer to a question raised by Gilmer and Masbaum (Forum Math. 25 (2013), no. 5, 1067–1106. arXiv:0912.4706).