Non-accessible localizations

IF 0.8 2区 数学 Q2 MATHEMATICS
J. Daniel Christensen
{"title":"Non-accessible localizations","authors":"J. Daniel Christensen","doi":"10.1112/topo.12336","DOIUrl":null,"url":null,"abstract":"<p>In a 2005 paper, Casacuberta, Scevenels, and Smith construct a homotopy idempotent functor <span></span><math>\n <semantics>\n <mi>E</mi>\n <annotation>$E$</annotation>\n </semantics></math> on the category of simplicial sets with the property that whether it can be expressed as localization with respect to a map <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math> is independent of the ZFC axioms. We show that this construction can be carried out in homotopy type theory. More precisely, we give a general method of associating to a suitable (possibly large) family of maps, a reflective subuniverse of any universe <span></span><math>\n <semantics>\n <mi>U</mi>\n <annotation>$\\mathcal {U}$</annotation>\n </semantics></math>. When specialized to an appropriate family, this produces a localization which when interpreted in the <span></span><math>\n <semantics>\n <mi>∞</mi>\n <annotation>$\\infty$</annotation>\n </semantics></math>-topos of spaces agrees with the localization corresponding to <span></span><math>\n <semantics>\n <mi>E</mi>\n <annotation>$E$</annotation>\n </semantics></math>. Our approach generalizes the approach of Casacuberta et al. (Adv. Math. <b>197</b> (2005), no. 1, 120–139) in two ways. First, by working in homotopy type theory, our construction can be interpreted in any <span></span><math>\n <semantics>\n <mi>∞</mi>\n <annotation>$\\infty$</annotation>\n </semantics></math>-topos. Second, while the local objects produced by Casacuberta et al. are always 1-types, our construction can produce <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>-types, for any <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>. This is new, even in the <span></span><math>\n <semantics>\n <mi>∞</mi>\n <annotation>$\\infty$</annotation>\n </semantics></math>-topos of spaces. In addition, by making use of universes, our proof is very direct. Along the way, we prove many results about “small” types that are of independent interest. As an application, we give a new proof that separated localizations exist. We also give results that say when a localization with respect to a family of maps can be presented as localization with respect to a single map, and show that the simplicial model satisfies a strong form of the axiom of choice that implies that sets cover and that the law of excluded middle holds.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 2","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12336","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12336","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In a 2005 paper, Casacuberta, Scevenels, and Smith construct a homotopy idempotent functor E $E$ on the category of simplicial sets with the property that whether it can be expressed as localization with respect to a map f $f$ is independent of the ZFC axioms. We show that this construction can be carried out in homotopy type theory. More precisely, we give a general method of associating to a suitable (possibly large) family of maps, a reflective subuniverse of any universe U $\mathcal {U}$ . When specialized to an appropriate family, this produces a localization which when interpreted in the $\infty$ -topos of spaces agrees with the localization corresponding to E $E$ . Our approach generalizes the approach of Casacuberta et al. (Adv. Math. 197 (2005), no. 1, 120–139) in two ways. First, by working in homotopy type theory, our construction can be interpreted in any $\infty$ -topos. Second, while the local objects produced by Casacuberta et al. are always 1-types, our construction can produce n $n$ -types, for any n $n$ . This is new, even in the $\infty$ -topos of spaces. In addition, by making use of universes, our proof is very direct. Along the way, we prove many results about “small” types that are of independent interest. As an application, we give a new proof that separated localizations exist. We also give results that say when a localization with respect to a family of maps can be presented as localization with respect to a single map, and show that the simplicial model satisfies a strong form of the axiom of choice that implies that sets cover and that the law of excluded middle holds.

Abstract Image

无障碍本地化
在 2005 年的一篇论文中,Casacuberta、Scevenels 和 Smith 在单纯集范畴上构建了一个同调幂等幂函数 E $E$,其性质是:它是否可以表达为关于映射 f $f$ 的局部化与 ZFC 公理无关。我们证明这种构造可以在同调类型理论中进行。更准确地说,我们给出了一种将任何宇宙 U $\mathcal {U}$ 的反射子宇宙与一个合适的(可能很大的)映射族关联起来的一般方法。当把它专门化为一个合适的族时,就会产生一种局部化,当用空间的∞ $\infty$ -topos 来解释时,这种局部化与对应于 E $E$ 的局部化是一致的。我们的方法推广了 Casacuberta 等人的方法(Adv. Math.197 (2005), no. 1, 120-139)的方法。首先,通过在同调类型理论中工作,我们的构造可以在任何 ∞ $\infty$ -topos 中解释。其次,卡萨库伯塔等人所产生的局部对象总是 1- 类型,而我们的构造可以产生 n $n$ 类型,对于任意 n $n$ 而言。即使在∞ $\infty$ -topos 的空间中,这也是全新的。此外,通过使用宇宙,我们的证明非常直接。在此过程中,我们证明了许多关于 "小 "类型的结果,这些结果具有独立的意义。作为应用,我们给出了一个新的证明,即分离的定位是存在的。我们还给出了一些结果,说明什么情况下关于映射族的局部化可以呈现为关于单个映射的局部化,并证明了简单模型满足选择公理的强形式,这意味着集合覆盖和排除中间律成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Topology
Journal of Topology 数学-数学
CiteScore
2.00
自引率
9.10%
发文量
62
审稿时长
>12 weeks
期刊介绍: The Journal of Topology publishes papers of high quality and significance in topology, geometry and adjacent areas of mathematics. Interesting, important and often unexpected links connect topology and geometry with many other parts of mathematics, and the editors welcome submissions on exciting new advances concerning such links, as well as those in the core subject areas of the journal. The Journal of Topology was founded in 2008. It is published quarterly with articles published individually online prior to appearing in a printed issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信