Knotted families from graspers

Pub Date : 2024-05-09 DOI:10.1112/topo.12337
Danica Kosanović
{"title":"Knotted families from graspers","authors":"Danica Kosanović","doi":"10.1112/topo.12337","DOIUrl":null,"url":null,"abstract":"<p>For any smooth manifold <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> of dimension <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>⩾</mo>\n <mn>4</mn>\n </mrow>\n <annotation>$d\\geqslant 4$</annotation>\n </semantics></math>, we construct explicit classes in homotopy groups of spaces of embeddings of either an arc or a circle into <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math>, in every degree that is a multiple of <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>−</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$d-3$</annotation>\n </semantics></math>, and show that they are detected in the Taylor tower of Goodwillie and Weiss. The classes are obtained from families of string links constructed in the <span></span><math>\n <semantics>\n <mi>d</mi>\n <annotation>$d$</annotation>\n </semantics></math>-ball.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12337","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For any smooth manifold M $M$ of dimension d 4 $d\geqslant 4$ , we construct explicit classes in homotopy groups of spaces of embeddings of either an arc or a circle into M $M$ , in every degree that is a multiple of d 3 $d-3$ , and show that they are detected in the Taylor tower of Goodwillie and Weiss. The classes are obtained from families of string links constructed in the d $d$ -ball.

Abstract Image

分享
查看原文
来自抓握器的打结家庭
对于维度为 d ⩾ 4 $d\geqslant 4$ 的任何光滑流形 M $M$,我们在弧或圆嵌入 M $M$的空间的同调群中,在每一个度数为 d - 3 $d-3$ 的倍数中构造了明确的类,并证明它们在古德威利和韦斯的泰勒塔中被检测到。这些类是从在 d $d$ 球中构造的弦链接族中获得的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信