On the Smith–Thom deficiency of Hilbert squares

Pub Date : 2024-05-30 DOI:10.1112/topo.12345
Viatcheslav Kharlamov, Rareş Răsdeaconu
{"title":"On the Smith–Thom deficiency of Hilbert squares","authors":"Viatcheslav Kharlamov,&nbsp;Rareş Răsdeaconu","doi":"10.1112/topo.12345","DOIUrl":null,"url":null,"abstract":"<p>We give an expression for the Smith–Thom deficiency of the Hilbert square <span></span><math>\n <semantics>\n <msup>\n <mi>X</mi>\n <mrow>\n <mo>[</mo>\n <mn>2</mn>\n <mo>]</mo>\n </mrow>\n </msup>\n <annotation>$X^{[2]}$</annotation>\n </semantics></math> of a smooth real algebraic variety <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> in terms of the rank of a suitable Mayer– Vietoris mapping in several situations. As a consequence, we establish a necessary and sufficient condition for the maximality of <span></span><math>\n <semantics>\n <msup>\n <mi>X</mi>\n <mrow>\n <mo>[</mo>\n <mn>2</mn>\n <mo>]</mo>\n </mrow>\n </msup>\n <annotation>$X^{[2]}$</annotation>\n </semantics></math> in the case of projective complete intersections, and show that with a few exceptions, no real nonsingular projective complete intersection of even dimension has maximal Hilbert square. We also provide new examples of smooth real algebraic varieties with maximal Hilbert square.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12345","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We give an expression for the Smith–Thom deficiency of the Hilbert square X [ 2 ] $X^{[2]}$ of a smooth real algebraic variety X $X$ in terms of the rank of a suitable Mayer– Vietoris mapping in several situations. As a consequence, we establish a necessary and sufficient condition for the maximality of X [ 2 ] $X^{[2]}$ in the case of projective complete intersections, and show that with a few exceptions, no real nonsingular projective complete intersection of even dimension has maximal Hilbert square. We also provide new examples of smooth real algebraic varieties with maximal Hilbert square.

Abstract Image

分享
查看原文
论希尔伯特正方形的史密斯-托姆缺陷
我们给出了几种情况下光滑实代数纷 X $X$ 的希尔伯特平方 X [ 2 ] $X^{[2]}$ 的 Smith-Thom 缺陷的表达式,即合适的 Mayer- Vietoris 映射的秩。因此,在射影完全交的情况下,我们为 X [ 2 ] $X^{[2]}$ 的最大性建立了必要条件和充分条件,并证明除了少数例外,没有偶数维的实非正射完全交具有最大希尔伯特平方。我们还提供了具有最大希尔伯特平方的光滑实代数品种的新例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信