{"title":"微局域剪切理论中的线性结构","authors":"Xin Jin, David Treumann","doi":"10.1112/topo.12325","DOIUrl":null,"url":null,"abstract":"<p>Let <math>\n <semantics>\n <mi>L</mi>\n <annotation>$L$</annotation>\n </semantics></math> be an exact Lagrangian submanifold of a cotangent bundle <math>\n <semantics>\n <mrow>\n <msup>\n <mi>T</mi>\n <mo>∗</mo>\n </msup>\n <mi>M</mi>\n </mrow>\n <annotation>$T^* M$</annotation>\n </semantics></math>, asymptotic to a Legendrian submanifold <math>\n <semantics>\n <mrow>\n <mi>Λ</mi>\n <mo>⊂</mo>\n <msup>\n <mi>T</mi>\n <mi>∞</mi>\n </msup>\n <mi>M</mi>\n </mrow>\n <annotation>$\\Lambda \\subset T^{\\infty } M$</annotation>\n </semantics></math>. We study a locally constant sheaf of <math>\n <semantics>\n <mi>∞</mi>\n <annotation>$\\infty$</annotation>\n </semantics></math>-categories on <math>\n <semantics>\n <mi>L</mi>\n <annotation>$L$</annotation>\n </semantics></math>, called the sheaf of brane structures or <math>\n <semantics>\n <msub>\n <mi>Brane</mi>\n <mi>L</mi>\n </msub>\n <annotation>$\\mathrm{Brane}_L$</annotation>\n </semantics></math>. Its fiber is the <math>\n <semantics>\n <mi>∞</mi>\n <annotation>$\\infty$</annotation>\n </semantics></math>-category of spectra, and we construct a Hamiltonian invariant, fully faithful functor from <math>\n <semantics>\n <mrow>\n <mi>Γ</mi>\n <mo>(</mo>\n <mi>L</mi>\n <mo>,</mo>\n <msub>\n <mi>Brane</mi>\n <mi>L</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$\\Gamma (L,\\mathrm{Brane}_L)$</annotation>\n </semantics></math> to the <math>\n <semantics>\n <mi>∞</mi>\n <annotation>$\\infty$</annotation>\n </semantics></math>-category of sheaves of spectra on <math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> with singular support in <math>\n <semantics>\n <mi>Λ</mi>\n <annotation>$\\Lambda$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12325","citationCount":"0","resultStr":"{\"title\":\"Brane structures in microlocal sheaf theory\",\"authors\":\"Xin Jin, David Treumann\",\"doi\":\"10.1112/topo.12325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <math>\\n <semantics>\\n <mi>L</mi>\\n <annotation>$L$</annotation>\\n </semantics></math> be an exact Lagrangian submanifold of a cotangent bundle <math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>T</mi>\\n <mo>∗</mo>\\n </msup>\\n <mi>M</mi>\\n </mrow>\\n <annotation>$T^* M$</annotation>\\n </semantics></math>, asymptotic to a Legendrian submanifold <math>\\n <semantics>\\n <mrow>\\n <mi>Λ</mi>\\n <mo>⊂</mo>\\n <msup>\\n <mi>T</mi>\\n <mi>∞</mi>\\n </msup>\\n <mi>M</mi>\\n </mrow>\\n <annotation>$\\\\Lambda \\\\subset T^{\\\\infty } M$</annotation>\\n </semantics></math>. We study a locally constant sheaf of <math>\\n <semantics>\\n <mi>∞</mi>\\n <annotation>$\\\\infty$</annotation>\\n </semantics></math>-categories on <math>\\n <semantics>\\n <mi>L</mi>\\n <annotation>$L$</annotation>\\n </semantics></math>, called the sheaf of brane structures or <math>\\n <semantics>\\n <msub>\\n <mi>Brane</mi>\\n <mi>L</mi>\\n </msub>\\n <annotation>$\\\\mathrm{Brane}_L$</annotation>\\n </semantics></math>. Its fiber is the <math>\\n <semantics>\\n <mi>∞</mi>\\n <annotation>$\\\\infty$</annotation>\\n </semantics></math>-category of spectra, and we construct a Hamiltonian invariant, fully faithful functor from <math>\\n <semantics>\\n <mrow>\\n <mi>Γ</mi>\\n <mo>(</mo>\\n <mi>L</mi>\\n <mo>,</mo>\\n <msub>\\n <mi>Brane</mi>\\n <mi>L</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\Gamma (L,\\\\mathrm{Brane}_L)$</annotation>\\n </semantics></math> to the <math>\\n <semantics>\\n <mi>∞</mi>\\n <annotation>$\\\\infty$</annotation>\\n </semantics></math>-category of sheaves of spectra on <math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$M$</annotation>\\n </semantics></math> with singular support in <math>\\n <semantics>\\n <mi>Λ</mi>\\n <annotation>$\\\\Lambda$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12325\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.12325\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Let be an exact Lagrangian submanifold of a cotangent bundle , asymptotic to a Legendrian submanifold . We study a locally constant sheaf of -categories on , called the sheaf of brane structures or . Its fiber is the -category of spectra, and we construct a Hamiltonian invariant, fully faithful functor from to the -category of sheaves of spectra on with singular support in .