{"title":"k $k$ 正表面群表示的退化","authors":"Jonas Beyrer, Beatrice Pozzetti","doi":"10.1112/topo.12352","DOIUrl":null,"url":null,"abstract":"<p>We introduce <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>-<i>positive representations</i>, a large class of <span></span><math>\n <semantics>\n <mrow>\n <mo>{</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mtext>…</mtext>\n <mo>,</mo>\n <mi>k</mi>\n <mo>}</mo>\n </mrow>\n <annotation>$\\lbrace 1,\\ldots ,k\\rbrace$</annotation>\n </semantics></math>-Anosov surface group representations into <span></span><math>\n <semantics>\n <mrow>\n <mi>PGL</mi>\n <mo>(</mo>\n <mi>E</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathsf {PGL}(E)$</annotation>\n </semantics></math> that share many features with Hitchin representations, and we study their degenerations: unless they are Hitchin, they can be deformed to non-discrete representations, but any limit is at least <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>k</mi>\n <mo>−</mo>\n <mn>3</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$(k-3)$</annotation>\n </semantics></math>-positive and irreducible limits are <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>k</mi>\n <mo>−</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$(k-1)$</annotation>\n </semantics></math>-positive. A major ingredient, of independent interest, is a general limit theorem for positively ratioed representations.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degenerations of \\n \\n k\\n $k$\\n -positive surface group representations\",\"authors\":\"Jonas Beyrer, Beatrice Pozzetti\",\"doi\":\"10.1112/topo.12352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math>-<i>positive representations</i>, a large class of <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>{</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mtext>…</mtext>\\n <mo>,</mo>\\n <mi>k</mi>\\n <mo>}</mo>\\n </mrow>\\n <annotation>$\\\\lbrace 1,\\\\ldots ,k\\\\rbrace$</annotation>\\n </semantics></math>-Anosov surface group representations into <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>PGL</mi>\\n <mo>(</mo>\\n <mi>E</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\mathsf {PGL}(E)$</annotation>\\n </semantics></math> that share many features with Hitchin representations, and we study their degenerations: unless they are Hitchin, they can be deformed to non-discrete representations, but any limit is at least <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>k</mi>\\n <mo>−</mo>\\n <mn>3</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(k-3)$</annotation>\\n </semantics></math>-positive and irreducible limits are <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>k</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(k-1)$</annotation>\\n </semantics></math>-positive. A major ingredient, of independent interest, is a general limit theorem for positively ratioed representations.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.12352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们引入了 k 个 $k$ 正表示,这是一大类 { 1 , ... , k }。 $\lbrace 1,\ldots ,k\rbrace$ -Anosov surface group representations into PGL ( E ) $\mathsf {PGL}(E)$,它们与希钦表示有许多共同特征,我们研究了它们的退化:除非它们是希钦表示,否则它们可以变形为非离散表示,但是任何极限至少是 ( k - 3 ) $(k-3)$ -正的,而不可还原极限是 ( k - 1 ) $(k-1)$ -正的。正比例表示的一般极限定理是一个重要的独立内容。
Degenerations of
k
$k$
-positive surface group representations
We introduce -positive representations, a large class of -Anosov surface group representations into that share many features with Hitchin representations, and we study their degenerations: unless they are Hitchin, they can be deformed to non-discrete representations, but any limit is at least -positive and irreducible limits are -positive. A major ingredient, of independent interest, is a general limit theorem for positively ratioed representations.