k $k$ 正表面群表示的退化

Pub Date : 2024-08-03 DOI:10.1112/topo.12352
Jonas Beyrer, Beatrice Pozzetti
{"title":"k $k$ 正表面群表示的退化","authors":"Jonas Beyrer,&nbsp;Beatrice Pozzetti","doi":"10.1112/topo.12352","DOIUrl":null,"url":null,"abstract":"<p>We introduce <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>-<i>positive representations</i>, a large class of <span></span><math>\n <semantics>\n <mrow>\n <mo>{</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mtext>…</mtext>\n <mo>,</mo>\n <mi>k</mi>\n <mo>}</mo>\n </mrow>\n <annotation>$\\lbrace 1,\\ldots ,k\\rbrace$</annotation>\n </semantics></math>-Anosov surface group representations into <span></span><math>\n <semantics>\n <mrow>\n <mi>PGL</mi>\n <mo>(</mo>\n <mi>E</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathsf {PGL}(E)$</annotation>\n </semantics></math> that share many features with Hitchin representations, and we study their degenerations: unless they are Hitchin, they can be deformed to non-discrete representations, but any limit is at least <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>k</mi>\n <mo>−</mo>\n <mn>3</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$(k-3)$</annotation>\n </semantics></math>-positive and irreducible limits are <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>k</mi>\n <mo>−</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$(k-1)$</annotation>\n </semantics></math>-positive. A major ingredient, of independent interest, is a general limit theorem for positively ratioed representations.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degenerations of \\n \\n k\\n $k$\\n -positive surface group representations\",\"authors\":\"Jonas Beyrer,&nbsp;Beatrice Pozzetti\",\"doi\":\"10.1112/topo.12352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math>-<i>positive representations</i>, a large class of <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>{</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mtext>…</mtext>\\n <mo>,</mo>\\n <mi>k</mi>\\n <mo>}</mo>\\n </mrow>\\n <annotation>$\\\\lbrace 1,\\\\ldots ,k\\\\rbrace$</annotation>\\n </semantics></math>-Anosov surface group representations into <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>PGL</mi>\\n <mo>(</mo>\\n <mi>E</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\mathsf {PGL}(E)$</annotation>\\n </semantics></math> that share many features with Hitchin representations, and we study their degenerations: unless they are Hitchin, they can be deformed to non-discrete representations, but any limit is at least <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>k</mi>\\n <mo>−</mo>\\n <mn>3</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(k-3)$</annotation>\\n </semantics></math>-positive and irreducible limits are <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>k</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(k-1)$</annotation>\\n </semantics></math>-positive. A major ingredient, of independent interest, is a general limit theorem for positively ratioed representations.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.12352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了 k 个 $k$ 正表示,这是一大类 { 1 , ... , k }。 $\lbrace 1,\ldots ,k\rbrace$ -Anosov surface group representations into PGL ( E ) $\mathsf {PGL}(E)$,它们与希钦表示有许多共同特征,我们研究了它们的退化:除非它们是希钦表示,否则它们可以变形为非离散表示,但是任何极限至少是 ( k - 3 ) $(k-3)$ -正的,而不可还原极限是 ( k - 1 ) $(k-1)$ -正的。正比例表示的一般极限定理是一个重要的独立内容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Degenerations of k $k$ -positive surface group representations

We introduce k $k$ -positive representations, a large class of { 1 , , k } $\lbrace 1,\ldots ,k\rbrace$ -Anosov surface group representations into PGL ( E ) $\mathsf {PGL}(E)$ that share many features with Hitchin representations, and we study their degenerations: unless they are Hitchin, they can be deformed to non-discrete representations, but any limit is at least ( k 3 ) $(k-3)$ -positive and irreducible limits are ( k 1 ) $(k-1)$ -positive. A major ingredient, of independent interest, is a general limit theorem for positively ratioed representations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信