k $k$ 正表面群表示的退化

IF 0.8 2区 数学 Q2 MATHEMATICS
Jonas Beyrer, Beatrice Pozzetti
{"title":"k $k$ 正表面群表示的退化","authors":"Jonas Beyrer,&nbsp;Beatrice Pozzetti","doi":"10.1112/topo.12352","DOIUrl":null,"url":null,"abstract":"<p>We introduce <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>-<i>positive representations</i>, a large class of <span></span><math>\n <semantics>\n <mrow>\n <mo>{</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mtext>…</mtext>\n <mo>,</mo>\n <mi>k</mi>\n <mo>}</mo>\n </mrow>\n <annotation>$\\lbrace 1,\\ldots ,k\\rbrace$</annotation>\n </semantics></math>-Anosov surface group representations into <span></span><math>\n <semantics>\n <mrow>\n <mi>PGL</mi>\n <mo>(</mo>\n <mi>E</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathsf {PGL}(E)$</annotation>\n </semantics></math> that share many features with Hitchin representations, and we study their degenerations: unless they are Hitchin, they can be deformed to non-discrete representations, but any limit is at least <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>k</mi>\n <mo>−</mo>\n <mn>3</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$(k-3)$</annotation>\n </semantics></math>-positive and irreducible limits are <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>k</mi>\n <mo>−</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$(k-1)$</annotation>\n </semantics></math>-positive. A major ingredient, of independent interest, is a general limit theorem for positively ratioed representations.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 3","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degenerations of \\n \\n k\\n $k$\\n -positive surface group representations\",\"authors\":\"Jonas Beyrer,&nbsp;Beatrice Pozzetti\",\"doi\":\"10.1112/topo.12352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math>-<i>positive representations</i>, a large class of <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>{</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mtext>…</mtext>\\n <mo>,</mo>\\n <mi>k</mi>\\n <mo>}</mo>\\n </mrow>\\n <annotation>$\\\\lbrace 1,\\\\ldots ,k\\\\rbrace$</annotation>\\n </semantics></math>-Anosov surface group representations into <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>PGL</mi>\\n <mo>(</mo>\\n <mi>E</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\mathsf {PGL}(E)$</annotation>\\n </semantics></math> that share many features with Hitchin representations, and we study their degenerations: unless they are Hitchin, they can be deformed to non-discrete representations, but any limit is at least <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>k</mi>\\n <mo>−</mo>\\n <mn>3</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(k-3)$</annotation>\\n </semantics></math>-positive and irreducible limits are <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>k</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(k-1)$</annotation>\\n </semantics></math>-positive. A major ingredient, of independent interest, is a general limit theorem for positively ratioed representations.</p>\",\"PeriodicalId\":56114,\"journal\":{\"name\":\"Journal of Topology\",\"volume\":\"17 3\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Topology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.12352\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12352","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了 k 个 $k$ 正表示,这是一大类 { 1 , ... , k }。 $\lbrace 1,\ldots ,k\rbrace$ -Anosov surface group representations into PGL ( E ) $\mathsf {PGL}(E)$,它们与希钦表示有许多共同特征,我们研究了它们的退化:除非它们是希钦表示,否则它们可以变形为非离散表示,但是任何极限至少是 ( k - 3 ) $(k-3)$ -正的,而不可还原极限是 ( k - 1 ) $(k-1)$ -正的。正比例表示的一般极限定理是一个重要的独立内容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Degenerations of k $k$ -positive surface group representations

We introduce k $k$ -positive representations, a large class of { 1 , , k } $\lbrace 1,\ldots ,k\rbrace$ -Anosov surface group representations into PGL ( E ) $\mathsf {PGL}(E)$ that share many features with Hitchin representations, and we study their degenerations: unless they are Hitchin, they can be deformed to non-discrete representations, but any limit is at least ( k 3 ) $(k-3)$ -positive and irreducible limits are ( k 1 ) $(k-1)$ -positive. A major ingredient, of independent interest, is a general limit theorem for positively ratioed representations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Topology
Journal of Topology 数学-数学
CiteScore
2.00
自引率
9.10%
发文量
62
审稿时长
>12 weeks
期刊介绍: The Journal of Topology publishes papers of high quality and significance in topology, geometry and adjacent areas of mathematics. Interesting, important and often unexpected links connect topology and geometry with many other parts of mathematics, and the editors welcome submissions on exciting new advances concerning such links, as well as those in the core subject areas of the journal. The Journal of Topology was founded in 2008. It is published quarterly with articles published individually online prior to appearing in a printed issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信