Brieskorn spheres, cyclic group actions and the Milnor conjecture

Pub Date : 2024-06-04 DOI:10.1112/topo.12339
David Baraglia, Pedram Hekmati
{"title":"Brieskorn spheres, cyclic group actions and the Milnor conjecture","authors":"David Baraglia,&nbsp;Pedram Hekmati","doi":"10.1112/topo.12339","DOIUrl":null,"url":null,"abstract":"<p>In this paper we further develop the theory of equivariant Seiberg–Witten–Floer cohomology of the two authors, with an emphasis on Brieskorn homology spheres. We obtain a number of applications. First, we show that the knot concordance invariants <span></span><math>\n <semantics>\n <msup>\n <mi>θ</mi>\n <mrow>\n <mo>(</mo>\n <mi>c</mi>\n <mo>)</mo>\n </mrow>\n </msup>\n <annotation>$\\theta ^{(c)}$</annotation>\n </semantics></math> defined by the first author satisfy <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>θ</mi>\n <mrow>\n <mo>(</mo>\n <mi>c</mi>\n <mo>)</mo>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>T</mi>\n <mrow>\n <mi>a</mi>\n <mo>,</mo>\n <mi>b</mi>\n </mrow>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mrow>\n <mo>(</mo>\n <mi>a</mi>\n <mo>−</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mo>(</mo>\n <mi>b</mi>\n <mo>−</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <mo>/</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$\\theta ^{(c)}(T_{a,b}) = (a-1)(b-1)/2$</annotation>\n </semantics></math> for torus knots, whenever <span></span><math>\n <semantics>\n <mi>c</mi>\n <annotation>$c$</annotation>\n </semantics></math> is a prime not dividing <span></span><math>\n <semantics>\n <mrow>\n <mi>a</mi>\n <mi>b</mi>\n </mrow>\n <annotation>$ab$</annotation>\n </semantics></math>. Since <span></span><math>\n <semantics>\n <msup>\n <mi>θ</mi>\n <mrow>\n <mo>(</mo>\n <mi>c</mi>\n <mo>)</mo>\n </mrow>\n </msup>\n <annotation>$\\theta ^{(c)}$</annotation>\n </semantics></math> is a lower bound for the slice genus, this gives a new proof of the Milnor conjecture. Second, we prove that a free cyclic group action on a Brieskorn homology 3-sphere <span></span><math>\n <semantics>\n <mrow>\n <mi>Y</mi>\n <mo>=</mo>\n <mi>Σ</mi>\n <mo>(</mo>\n <msub>\n <mi>a</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <mi>⋯</mi>\n <mo>,</mo>\n <msub>\n <mi>a</mi>\n <mi>r</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$Y = \\Sigma (a_1, \\dots, a_r)$</annotation>\n </semantics></math> does not extend smoothly to any homology 4-ball bounding <span></span><math>\n <semantics>\n <mi>Y</mi>\n <annotation>$Y$</annotation>\n </semantics></math>. In the case of a non-free cyclic group action of prime order, we prove that if the rank of <span></span><math>\n <semantics>\n <mrow>\n <mi>H</mi>\n <msubsup>\n <mi>F</mi>\n <mrow>\n <mi>r</mi>\n <mi>e</mi>\n <mi>d</mi>\n </mrow>\n <mo>+</mo>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <mi>Y</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$HF_{red}^+(Y)$</annotation>\n </semantics></math> is greater than <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math> times the rank of <span></span><math>\n <semantics>\n <mrow>\n <mi>H</mi>\n <msubsup>\n <mi>F</mi>\n <mrow>\n <mi>r</mi>\n <mi>e</mi>\n <mi>d</mi>\n </mrow>\n <mo>+</mo>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <mi>Y</mi>\n <mo>/</mo>\n <msub>\n <mi>Z</mi>\n <mi>p</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$HF_{red}^+(Y/\\mathbb {Z}_p)$</annotation>\n </semantics></math>, then the <span></span><math>\n <semantics>\n <msub>\n <mi>Z</mi>\n <mi>p</mi>\n </msub>\n <annotation>$\\mathbb {Z}_p$</annotation>\n </semantics></math>-action on <span></span><math>\n <semantics>\n <mi>Y</mi>\n <annotation>$Y$</annotation>\n </semantics></math> does not extend smoothly to any homology 4-ball bounding <span></span><math>\n <semantics>\n <mi>Y</mi>\n <annotation>$Y$</annotation>\n </semantics></math>. Third, we prove that for all but finitely many primes a similar non-extension result holds in the case that the bounding 4-manifold has positive-definite intersection form. Finally, we also prove non-extension results for equivariant connected sums of Brieskorn homology spheres.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12339","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we further develop the theory of equivariant Seiberg–Witten–Floer cohomology of the two authors, with an emphasis on Brieskorn homology spheres. We obtain a number of applications. First, we show that the knot concordance invariants θ ( c ) $\theta ^{(c)}$ defined by the first author satisfy θ ( c ) ( T a , b ) = ( a 1 ) ( b 1 ) / 2 $\theta ^{(c)}(T_{a,b}) = (a-1)(b-1)/2$ for torus knots, whenever c $c$ is a prime not dividing a b $ab$ . Since θ ( c ) $\theta ^{(c)}$ is a lower bound for the slice genus, this gives a new proof of the Milnor conjecture. Second, we prove that a free cyclic group action on a Brieskorn homology 3-sphere Y = Σ ( a 1 , , a r ) $Y = \Sigma (a_1, \dots, a_r)$ does not extend smoothly to any homology 4-ball bounding Y $Y$ . In the case of a non-free cyclic group action of prime order, we prove that if the rank of H F r e d + ( Y ) $HF_{red}^+(Y)$ is greater than p $p$ times the rank of H F r e d + ( Y / Z p ) $HF_{red}^+(Y/\mathbb {Z}_p)$ , then the Z p $\mathbb {Z}_p$ -action on Y $Y$ does not extend smoothly to any homology 4-ball bounding Y $Y$ . Third, we prove that for all but finitely many primes a similar non-extension result holds in the case that the bounding 4-manifold has positive-definite intersection form. Finally, we also prove non-extension results for equivariant connected sums of Brieskorn homology spheres.

分享
查看原文
布里斯科恩球、循环群作用和米尔诺猜想
在本文中,我们进一步发展了两位作者的等变塞伯格-维滕-弗洛尔同调理论,重点是布里斯科恩同调球。我们获得了一些应用。首先,我们证明了第一作者定义的结协和不变式 θ ( c ) $\theta ^{(c)}$ 满足 θ ( c ) ( T a , b ) = ( a - 1 ) ( b - 1 ) / 2 $\theta ^{(c)}(T_{a,b}) = (a-1)(b-1)/2$ 对于环结来说,只要 c $c$ 是不除以 a b $ab$ 的素数。由于 θ ( c ) $\theta ^{(c)}$ 是片属的下限,这就给出了米尔诺猜想的新证明。其次,我们证明了在布里斯科恩同调 3 球 Y = Σ ( a 1 , ⋯ , a r ) $Y = \Sigma (a_1, \dots, a_r)$ 上的自由循环群作用不会平滑地扩展到任何与 Y $Y$ 边界的同调 4 球。在素数阶的非自由循环群作用的情况下,我们证明如果 H F r e d + ( Y ) $HF_{red}^+(Y)$ 的秩大于 H F r e d + ( Y / Z p ) $HF_{red}^+(Y/\mathbb {Z}_p)$ 的秩的 p $p $ 倍,那么 Y $Y$ 上的 Z p $\mathbb {Z}_p$ 作用不会平滑地扩展到任何与 Y $Y$ 定界的同源 4 球。第三,我们证明,对于除有限多个素以外的所有情况,类似的非扩展结果在边界 4-manifold具有正定交形式的情况下成立。最后,我们还证明了布里斯科恩同调球等变连接和的非扩展结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信