{"title":"Brieskorn spheres, cyclic group actions and the Milnor conjecture","authors":"David Baraglia, Pedram Hekmati","doi":"10.1112/topo.12339","DOIUrl":null,"url":null,"abstract":"<p>In this paper we further develop the theory of equivariant Seiberg–Witten–Floer cohomology of the two authors, with an emphasis on Brieskorn homology spheres. We obtain a number of applications. First, we show that the knot concordance invariants <span></span><math>\n <semantics>\n <msup>\n <mi>θ</mi>\n <mrow>\n <mo>(</mo>\n <mi>c</mi>\n <mo>)</mo>\n </mrow>\n </msup>\n <annotation>$\\theta ^{(c)}$</annotation>\n </semantics></math> defined by the first author satisfy <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>θ</mi>\n <mrow>\n <mo>(</mo>\n <mi>c</mi>\n <mo>)</mo>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>T</mi>\n <mrow>\n <mi>a</mi>\n <mo>,</mo>\n <mi>b</mi>\n </mrow>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mrow>\n <mo>(</mo>\n <mi>a</mi>\n <mo>−</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mo>(</mo>\n <mi>b</mi>\n <mo>−</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <mo>/</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$\\theta ^{(c)}(T_{a,b}) = (a-1)(b-1)/2$</annotation>\n </semantics></math> for torus knots, whenever <span></span><math>\n <semantics>\n <mi>c</mi>\n <annotation>$c$</annotation>\n </semantics></math> is a prime not dividing <span></span><math>\n <semantics>\n <mrow>\n <mi>a</mi>\n <mi>b</mi>\n </mrow>\n <annotation>$ab$</annotation>\n </semantics></math>. Since <span></span><math>\n <semantics>\n <msup>\n <mi>θ</mi>\n <mrow>\n <mo>(</mo>\n <mi>c</mi>\n <mo>)</mo>\n </mrow>\n </msup>\n <annotation>$\\theta ^{(c)}$</annotation>\n </semantics></math> is a lower bound for the slice genus, this gives a new proof of the Milnor conjecture. Second, we prove that a free cyclic group action on a Brieskorn homology 3-sphere <span></span><math>\n <semantics>\n <mrow>\n <mi>Y</mi>\n <mo>=</mo>\n <mi>Σ</mi>\n <mo>(</mo>\n <msub>\n <mi>a</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <mi>⋯</mi>\n <mo>,</mo>\n <msub>\n <mi>a</mi>\n <mi>r</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$Y = \\Sigma (a_1, \\dots, a_r)$</annotation>\n </semantics></math> does not extend smoothly to any homology 4-ball bounding <span></span><math>\n <semantics>\n <mi>Y</mi>\n <annotation>$Y$</annotation>\n </semantics></math>. In the case of a non-free cyclic group action of prime order, we prove that if the rank of <span></span><math>\n <semantics>\n <mrow>\n <mi>H</mi>\n <msubsup>\n <mi>F</mi>\n <mrow>\n <mi>r</mi>\n <mi>e</mi>\n <mi>d</mi>\n </mrow>\n <mo>+</mo>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <mi>Y</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$HF_{red}^+(Y)$</annotation>\n </semantics></math> is greater than <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math> times the rank of <span></span><math>\n <semantics>\n <mrow>\n <mi>H</mi>\n <msubsup>\n <mi>F</mi>\n <mrow>\n <mi>r</mi>\n <mi>e</mi>\n <mi>d</mi>\n </mrow>\n <mo>+</mo>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <mi>Y</mi>\n <mo>/</mo>\n <msub>\n <mi>Z</mi>\n <mi>p</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$HF_{red}^+(Y/\\mathbb {Z}_p)$</annotation>\n </semantics></math>, then the <span></span><math>\n <semantics>\n <msub>\n <mi>Z</mi>\n <mi>p</mi>\n </msub>\n <annotation>$\\mathbb {Z}_p$</annotation>\n </semantics></math>-action on <span></span><math>\n <semantics>\n <mi>Y</mi>\n <annotation>$Y$</annotation>\n </semantics></math> does not extend smoothly to any homology 4-ball bounding <span></span><math>\n <semantics>\n <mi>Y</mi>\n <annotation>$Y$</annotation>\n </semantics></math>. Third, we prove that for all but finitely many primes a similar non-extension result holds in the case that the bounding 4-manifold has positive-definite intersection form. Finally, we also prove non-extension results for equivariant connected sums of Brieskorn homology spheres.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 2","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12339","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12339","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we further develop the theory of equivariant Seiberg–Witten–Floer cohomology of the two authors, with an emphasis on Brieskorn homology spheres. We obtain a number of applications. First, we show that the knot concordance invariants defined by the first author satisfy for torus knots, whenever is a prime not dividing . Since is a lower bound for the slice genus, this gives a new proof of the Milnor conjecture. Second, we prove that a free cyclic group action on a Brieskorn homology 3-sphere does not extend smoothly to any homology 4-ball bounding . In the case of a non-free cyclic group action of prime order, we prove that if the rank of is greater than times the rank of , then the -action on does not extend smoothly to any homology 4-ball bounding . Third, we prove that for all but finitely many primes a similar non-extension result holds in the case that the bounding 4-manifold has positive-definite intersection form. Finally, we also prove non-extension results for equivariant connected sums of Brieskorn homology spheres.
在本文中,我们进一步发展了两位作者的等变塞伯格-维滕-弗洛尔同调理论,重点是布里斯科恩同调球。我们获得了一些应用。首先,我们证明了第一作者定义的结协和不变式 θ ( c ) $\theta ^{(c)}$ 满足 θ ( c ) ( T a , b ) = ( a - 1 ) ( b - 1 ) / 2 $\theta ^{(c)}(T_{a,b}) = (a-1)(b-1)/2$ 对于环结来说,只要 c $c$ 是不除以 a b $ab$ 的素数。由于 θ ( c ) $\theta ^{(c)}$ 是片属的下限,这就给出了米尔诺猜想的新证明。其次,我们证明了在布里斯科恩同调 3 球 Y = Σ ( a 1 , ⋯ , a r ) $Y = \Sigma (a_1, \dots, a_r)$ 上的自由循环群作用不会平滑地扩展到任何与 Y $Y$ 边界的同调 4 球。在素数阶的非自由循环群作用的情况下,我们证明如果 H F r e d + ( Y ) $HF_{red}^+(Y)$ 的秩大于 H F r e d + ( Y / Z p ) $HF_{red}^+(Y/\mathbb {Z}_p)$ 的秩的 p $p $ 倍,那么 Y $Y$ 上的 Z p $\mathbb {Z}_p$ 作用不会平滑地扩展到任何与 Y $Y$ 定界的同源 4 球。第三,我们证明,对于除有限多个素以外的所有情况,类似的非扩展结果在边界 4-manifold具有正定交形式的情况下成立。最后,我们还证明了布里斯科恩同调球等变连接和的非扩展结果。
期刊介绍:
The Journal of Topology publishes papers of high quality and significance in topology, geometry and adjacent areas of mathematics. Interesting, important and often unexpected links connect topology and geometry with many other parts of mathematics, and the editors welcome submissions on exciting new advances concerning such links, as well as those in the core subject areas of the journal.
The Journal of Topology was founded in 2008. It is published quarterly with articles published individually online prior to appearing in a printed issue.