{"title":"Characteristic cohomology II: Matrix singularities","authors":"James Damon","doi":"10.1112/topo.12330","DOIUrl":null,"url":null,"abstract":"<p>For a germ of a variety <span></span><math>\n <semantics>\n <mrow>\n <mi>V</mi>\n <mo>,</mo>\n <mn>0</mn>\n <mo>⊂</mo>\n <msup>\n <mi>C</mi>\n <mi>N</mi>\n </msup>\n <mo>,</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\mathcal {V}, 0 \\subset \\mathbb {C}^N, 0$</annotation>\n </semantics></math>, a singularity <span></span><math>\n <semantics>\n <msub>\n <mi>V</mi>\n <mn>0</mn>\n </msub>\n <annotation>$\\mathcal {V}_0$</annotation>\n </semantics></math> of “type <span></span><math>\n <semantics>\n <mi>V</mi>\n <annotation>$\\mathcal {V}$</annotation>\n </semantics></math>” is given by a germ <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>f</mi>\n <mn>0</mn>\n </msub>\n <mo>:</mo>\n <msup>\n <mi>C</mi>\n <mi>n</mi>\n </msup>\n <mo>,</mo>\n <mn>0</mn>\n <mo>→</mo>\n <msup>\n <mi>C</mi>\n <mi>N</mi>\n </msup>\n <mo>,</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$f_0: \\mathbb {C}^n, 0 \\rightarrow \\mathbb {C}^N, 0$</annotation>\n </semantics></math>, which is transverse to <span></span><math>\n <semantics>\n <mrow>\n <mi>V</mi>\n <mo>∖</mo>\n <mo>{</mo>\n <mn>0</mn>\n <mo>}</mo>\n </mrow>\n <annotation>$\\mathcal {V}\\setminus \\lbrace 0\\rbrace$</annotation>\n </semantics></math> in an appropriate sense, such that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>V</mi>\n <mn>0</mn>\n </msub>\n <mo>=</mo>\n <msubsup>\n <mi>f</mi>\n <mn>0</mn>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <mi>V</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {V}_0 = f_0^{-1}(\\mathcal {V})$</annotation>\n </semantics></math>. In part I of this paper, we introduced for such singularities the Characteristic Cohomology for the Milnor fiber (for <span></span><math>\n <semantics>\n <mi>V</mi>\n <annotation>$\\mathcal {V}$</annotation>\n </semantics></math> a hypersurface), and complement and link (for the general case). It captures the cohomology of <span></span><math>\n <semantics>\n <msub>\n <mi>V</mi>\n <mn>0</mn>\n </msub>\n <annotation>$\\mathcal {V}_0$</annotation>\n </semantics></math> inherited from <span></span><math>\n <semantics>\n <mi>V</mi>\n <annotation>$\\mathcal {V}$</annotation>\n </semantics></math> and is given by subalgebras of the cohomology for <span></span><math>\n <semantics>\n <msub>\n <mi>V</mi>\n <mn>0</mn>\n </msub>\n <annotation>$\\mathcal {V}_0$</annotation>\n </semantics></math> for the Milnor fiber and complements, and is a subgroup for the cohomology of the link. We showed these cohomologies are functorial and invariant under diffeomorphism groups of equivalences <span></span><math>\n <semantics>\n <msub>\n <mi>K</mi>\n <mi>H</mi>\n </msub>\n <annotation>$\\mathcal {K}_{H}$</annotation>\n </semantics></math> for Milnor fibers and <span></span><math>\n <semantics>\n <msub>\n <mi>K</mi>\n <mi>V</mi>\n </msub>\n <annotation>$\\mathcal {K}_{\\mathcal {V}}$</annotation>\n </semantics></math> for complements and links. We also gave geometric criteria for detecting the nonvanishing of the characteristic cohomology.</p><p>In this paper, we apply these methods in the case <span></span><math>\n <semantics>\n <mi>V</mi>\n <annotation>$\\mathcal {V}$</annotation>\n </semantics></math> denotes any of the varieties of singular <span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n <mo>×</mo>\n <mi>m</mi>\n </mrow>\n <annotation>$m \\times m$</annotation>\n </semantics></math> complex matrices, which may be either general, symmetric, or skew-symmetric (with <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math> even). For these varieties, we have shown in another paper that their Milnor fibers and complements have compact “model submanifolds” for their homotopy types, which are classical symmetric spaces in the sense of Cartan. As a result, we first give the structure of the characteristic cohomology subalgebras for the Milnor fibers and complements as images of exterior algebras (or in one case a module on two generators over an exterior algebra). For links, the characteristic cohomology group is the image of a shifted upper truncated exterior algebra. In addition, we extend these results for the complement and link to the case of general <span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n <mo>×</mo>\n <mi>p</mi>\n </mrow>\n <annotation>$m \\times p$</annotation>\n </semantics></math> complex matrices.</p><p>Second, we then apply the geometric detection methods introduced in Part I to detect when specific characteristic cohomology classes for the Milnor fiber or complement are nonzero. We identify an exterior subalgebra on a specific set of generators and for the link that it contains an appropriate shifted upper truncated exterior subalgebra. The detection criterion involves a special type of “kite map germ of size <span></span><math>\n <semantics>\n <mi>ℓ</mi>\n <annotation>$\\ell$</annotation>\n </semantics></math>” based on a given flag of subspaces. The general criterion that detects such nonvanishing characteristic cohomology is then given in terms of the defining germ <span></span><math>\n <semantics>\n <msub>\n <mi>f</mi>\n <mn>0</mn>\n </msub>\n <annotation>$f_0$</annotation>\n </semantics></math> containing such a kite map germ of size <span></span><math>\n <semantics>\n <mi>ℓ</mi>\n <annotation>$\\ell$</annotation>\n </semantics></math>. Furthermore, we use a restricted form of kite spaces to give a cohomological relation between the cohomology of local links and the global link for the varieties of singular matrices.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
For a germ of a variety , a singularity of “type ” is given by a germ , which is transverse to in an appropriate sense, such that . In part I of this paper, we introduced for such singularities the Characteristic Cohomology for the Milnor fiber (for a hypersurface), and complement and link (for the general case). It captures the cohomology of inherited from and is given by subalgebras of the cohomology for for the Milnor fiber and complements, and is a subgroup for the cohomology of the link. We showed these cohomologies are functorial and invariant under diffeomorphism groups of equivalences for Milnor fibers and for complements and links. We also gave geometric criteria for detecting the nonvanishing of the characteristic cohomology.
In this paper, we apply these methods in the case denotes any of the varieties of singular complex matrices, which may be either general, symmetric, or skew-symmetric (with even). For these varieties, we have shown in another paper that their Milnor fibers and complements have compact “model submanifolds” for their homotopy types, which are classical symmetric spaces in the sense of Cartan. As a result, we first give the structure of the characteristic cohomology subalgebras for the Milnor fibers and complements as images of exterior algebras (or in one case a module on two generators over an exterior algebra). For links, the characteristic cohomology group is the image of a shifted upper truncated exterior algebra. In addition, we extend these results for the complement and link to the case of general complex matrices.
Second, we then apply the geometric detection methods introduced in Part I to detect when specific characteristic cohomology classes for the Milnor fiber or complement are nonzero. We identify an exterior subalgebra on a specific set of generators and for the link that it contains an appropriate shifted upper truncated exterior subalgebra. The detection criterion involves a special type of “kite map germ of size ” based on a given flag of subspaces. The general criterion that detects such nonvanishing characteristic cohomology is then given in terms of the defining germ containing such a kite map germ of size . Furthermore, we use a restricted form of kite spaces to give a cohomological relation between the cohomology of local links and the global link for the varieties of singular matrices.
对于 "类型 V $\mathcal {V}$"的一个综类 V 0 $\mathcal {V}_0$ 是由一个综类 f 0 : C n , 0 → C N , 0 $f_0: \mathbb {C}^n, 0 \rightarrow \mathbb {C}^N, 0$ 给出的,它横向于 V ∖ { 0 }。 $\mathcal {V}setminus \lbrace 0\rbrace$ 在适当的意义上,这样 V 0 = f 0 - 1 ( V ) $\mathcal {V}_0 = f_0^{-1}(\mathcal {V})$ 。在本文的第一部分,我们介绍了这种奇点的米尔诺纤维(对于 V $\mathcal {V}$ 一个超曲面)的特性同调(Characteristic Cohomology),以及补集和链接(对于一般情况)。它捕捉了从 V $\mathcal {V}$ 继承而来的 V 0 $\mathcal {V}_0$ 的同调,并由米尔诺纤维和补集的 V 0 $\mathcal {V}_0$ 的同调的子代数给出,而且是链接的同调的子群。我们证明了这些同调在米尔诺纤维的等价衍射组 K H $\mathcal {K}_{H}$和补集与链接的等价衍射组 K V $\mathcal {K}_{\mathcal {V}}$下是函数式的和不变的。在本文中,我们将这些方法应用于 V $\mathcal {V}$ 表示奇异 m × m $m \times m$ 复矩阵的任何品种的情况,这些复矩阵可能是一般的、对称的或倾斜对称的(m $m$ 偶数)。对于这些矩阵,我们在另一篇论文中已经证明,它们的米尔诺纤维和补集有紧凑的 "模型子 afternoon",它们的同调类型是 Cartan 意义上的经典对称空间。因此,我们首先给出了米尔诺纤维和补集的特征同调子代数的结构,即外部代数的图像(或者在一种情况下,外部代数上两个生成器的模块)。对于链接,特征同调群是移位上截外部代数的映像。此外,我们将这些关于补集和链接的结果扩展到一般 m × p $m \times p$ 复矩阵的情况。其次,我们应用第一部分介绍的几何检测方法来检测米尔诺纤维或补集的特定特征同调类何时为非零。我们在一组特定的生成器上识别出一个外部子代数,并确定它包含一个适当的移位上截断外部子代数。检测标准涉及一种基于给定子空间标志的特殊类型 "大小为 ℓ $\ell$ 的风筝映射胚芽"。