论瞬子和单极浮子理论中的陶不变式

Pub Date : 2024-06-05 DOI:10.1112/topo.12346
Sudipta Ghosh, Zhenkun Li, C.-M. Michael Wong
{"title":"论瞬子和单极浮子理论中的陶不变式","authors":"Sudipta Ghosh,&nbsp;Zhenkun Li,&nbsp;C.-M. Michael Wong","doi":"10.1112/topo.12346","DOIUrl":null,"url":null,"abstract":"<p>We unify two existing approaches to the <i>tau</i> invariants in instanton and monopole Floer theories, by identifying <span></span><math>\n <semantics>\n <msub>\n <mi>τ</mi>\n <mi>G</mi>\n </msub>\n <annotation>$\\tau _{\\mathrm{G}}$</annotation>\n </semantics></math>, defined by the second author via the <i>minus</i> flavors <span></span><math>\n <semantics>\n <msup>\n <munder>\n <mo>KHI</mo>\n <mo>̲</mo>\n </munder>\n <mo>−</mo>\n </msup>\n <annotation>$\\underline{\\operatorname{KHI}}^-$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msup>\n <munder>\n <mo>KHM</mo>\n <mo>̲</mo>\n </munder>\n <mo>−</mo>\n </msup>\n <annotation>$\\underline{\\operatorname{KHM}}^-$</annotation>\n </semantics></math> of the knot homologies, with <span></span><math>\n <semantics>\n <msubsup>\n <mi>τ</mi>\n <mi>G</mi>\n <mo>♯</mo>\n </msubsup>\n <annotation>$\\tau ^\\sharp _{\\mathrm{G}}$</annotation>\n </semantics></math>, defined by Baldwin and Sivek via cobordism maps of the 3-manifold homologies induced by knot surgeries. We exhibit several consequences, including a relationship with Heegaard Floer theory, and use our result to compute <span></span><math>\n <semantics>\n <msup>\n <munder>\n <mo>KHI</mo>\n <mo>̲</mo>\n </munder>\n <mo>−</mo>\n </msup>\n <annotation>$\\underline{\\operatorname{KHI}}^-$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msup>\n <munder>\n <mo>KHM</mo>\n <mo>̲</mo>\n </munder>\n <mo>−</mo>\n </msup>\n <annotation>$\\underline{\\operatorname{KHM}}^-$</annotation>\n </semantics></math> for twist knots.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12346","citationCount":"0","resultStr":"{\"title\":\"On the tau invariants in instanton and monopole Floer theories\",\"authors\":\"Sudipta Ghosh,&nbsp;Zhenkun Li,&nbsp;C.-M. Michael Wong\",\"doi\":\"10.1112/topo.12346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We unify two existing approaches to the <i>tau</i> invariants in instanton and monopole Floer theories, by identifying <span></span><math>\\n <semantics>\\n <msub>\\n <mi>τ</mi>\\n <mi>G</mi>\\n </msub>\\n <annotation>$\\\\tau _{\\\\mathrm{G}}$</annotation>\\n </semantics></math>, defined by the second author via the <i>minus</i> flavors <span></span><math>\\n <semantics>\\n <msup>\\n <munder>\\n <mo>KHI</mo>\\n <mo>̲</mo>\\n </munder>\\n <mo>−</mo>\\n </msup>\\n <annotation>$\\\\underline{\\\\operatorname{KHI}}^-$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <msup>\\n <munder>\\n <mo>KHM</mo>\\n <mo>̲</mo>\\n </munder>\\n <mo>−</mo>\\n </msup>\\n <annotation>$\\\\underline{\\\\operatorname{KHM}}^-$</annotation>\\n </semantics></math> of the knot homologies, with <span></span><math>\\n <semantics>\\n <msubsup>\\n <mi>τ</mi>\\n <mi>G</mi>\\n <mo>♯</mo>\\n </msubsup>\\n <annotation>$\\\\tau ^\\\\sharp _{\\\\mathrm{G}}$</annotation>\\n </semantics></math>, defined by Baldwin and Sivek via cobordism maps of the 3-manifold homologies induced by knot surgeries. We exhibit several consequences, including a relationship with Heegaard Floer theory, and use our result to compute <span></span><math>\\n <semantics>\\n <msup>\\n <munder>\\n <mo>KHI</mo>\\n <mo>̲</mo>\\n </munder>\\n <mo>−</mo>\\n </msup>\\n <annotation>$\\\\underline{\\\\operatorname{KHI}}^-$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <msup>\\n <munder>\\n <mo>KHM</mo>\\n <mo>̲</mo>\\n </munder>\\n <mo>−</mo>\\n </msup>\\n <annotation>$\\\\underline{\\\\operatorname{KHM}}^-$</annotation>\\n </semantics></math> for twist knots.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12346\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.12346\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们将第二作者通过结同构的减味 KHI ̲ - $\underline{operatorname{KHI}}^-$ 和 KHM ̲ - $\underline{operatorname{KHM}}^-$ 定义的 τ G $\tau _\{mathrm{G}}$ 与 Baldwin 和 Sivek 通过共线性定义的 τ G ♯ $\tau \sharp _\{mathrm{G}}$ 统一为瞬子和单极浮子理论中的头不变式的两种现有方法、G τ ♯ $\tau ^\sharp _{mathrm{G}}$,由鲍德温和西韦克通过结手术诱导的 3-manifold同调的共线性映射定义。我们展示了几个结果,包括与 Heegaard Floer 理论的关系,并用我们的结果计算了扭结的 KHI ̲ - $\underline{\operatorname{KHI}}^-$ 和 KHM ̲ - $\underline{\operatorname{KHM}}^-$ 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the tau invariants in instanton and monopole Floer theories

分享
查看原文
On the tau invariants in instanton and monopole Floer theories

We unify two existing approaches to the tau invariants in instanton and monopole Floer theories, by identifying τ G $\tau _{\mathrm{G}}$ , defined by the second author via the minus flavors KHI ̲ $\underline{\operatorname{KHI}}^-$ and KHM ̲ $\underline{\operatorname{KHM}}^-$ of the knot homologies, with τ G $\tau ^\sharp _{\mathrm{G}}$ , defined by Baldwin and Sivek via cobordism maps of the 3-manifold homologies induced by knot surgeries. We exhibit several consequences, including a relationship with Heegaard Floer theory, and use our result to compute KHI ̲ $\underline{\operatorname{KHI}}^-$ and KHM ̲ $\underline{\operatorname{KHM}}^-$ for twist knots.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信