Applications of higher-dimensional Heegaard Floer homology to contact topology

IF 0.8 2区 数学 Q2 MATHEMATICS
Vincent Colin, Ko Honda, Yin Tian
{"title":"Applications of higher-dimensional Heegaard Floer homology to contact topology","authors":"Vincent Colin,&nbsp;Ko Honda,&nbsp;Yin Tian","doi":"10.1112/topo.12349","DOIUrl":null,"url":null,"abstract":"<p>The goal of this paper is to set up the general framework of higher-dimensional Heegaard Floer homology, define the contact class, and use it to give an obstruction to the Liouville fillability of a contact manifold and a sufficient condition for the Weinstein conjecture to hold. We discuss several classes of examples including those coming from analyzing a close cousin of symplectic Khovanov homology and the analog of the Plamenevskaya invariant of transverse links.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 3","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12349","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The goal of this paper is to set up the general framework of higher-dimensional Heegaard Floer homology, define the contact class, and use it to give an obstruction to the Liouville fillability of a contact manifold and a sufficient condition for the Weinstein conjecture to hold. We discuss several classes of examples including those coming from analyzing a close cousin of symplectic Khovanov homology and the analog of the Plamenevskaya invariant of transverse links.

高维 Heegaard Floer 同调在接触拓扑学中的应用
本文的目的是建立高维希加弗洛尔同调的一般框架,定义接触类,并利用它给出接触流形的柳维尔可填充性的障碍和温斯坦猜想成立的充分条件。我们讨论了几类例子,包括来自分析交点霍瓦诺夫同调的近亲和横向联系的普拉梅内夫斯卡娅不变量的类似物的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Topology
Journal of Topology 数学-数学
CiteScore
2.00
自引率
9.10%
发文量
62
审稿时长
>12 weeks
期刊介绍: The Journal of Topology publishes papers of high quality and significance in topology, geometry and adjacent areas of mathematics. Interesting, important and often unexpected links connect topology and geometry with many other parts of mathematics, and the editors welcome submissions on exciting new advances concerning such links, as well as those in the core subject areas of the journal. The Journal of Topology was founded in 2008. It is published quarterly with articles published individually online prior to appearing in a printed issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信