On the tau invariants in instanton and monopole Floer theories

Pub Date : 2024-06-05 DOI:10.1112/topo.12346
Sudipta Ghosh, Zhenkun Li, C.-M. Michael Wong
{"title":"On the tau invariants in instanton and monopole Floer theories","authors":"Sudipta Ghosh,&nbsp;Zhenkun Li,&nbsp;C.-M. Michael Wong","doi":"10.1112/topo.12346","DOIUrl":null,"url":null,"abstract":"<p>We unify two existing approaches to the <i>tau</i> invariants in instanton and monopole Floer theories, by identifying <span></span><math>\n <semantics>\n <msub>\n <mi>τ</mi>\n <mi>G</mi>\n </msub>\n <annotation>$\\tau _{\\mathrm{G}}$</annotation>\n </semantics></math>, defined by the second author via the <i>minus</i> flavors <span></span><math>\n <semantics>\n <msup>\n <munder>\n <mo>KHI</mo>\n <mo>̲</mo>\n </munder>\n <mo>−</mo>\n </msup>\n <annotation>$\\underline{\\operatorname{KHI}}^-$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msup>\n <munder>\n <mo>KHM</mo>\n <mo>̲</mo>\n </munder>\n <mo>−</mo>\n </msup>\n <annotation>$\\underline{\\operatorname{KHM}}^-$</annotation>\n </semantics></math> of the knot homologies, with <span></span><math>\n <semantics>\n <msubsup>\n <mi>τ</mi>\n <mi>G</mi>\n <mo>♯</mo>\n </msubsup>\n <annotation>$\\tau ^\\sharp _{\\mathrm{G}}$</annotation>\n </semantics></math>, defined by Baldwin and Sivek via cobordism maps of the 3-manifold homologies induced by knot surgeries. We exhibit several consequences, including a relationship with Heegaard Floer theory, and use our result to compute <span></span><math>\n <semantics>\n <msup>\n <munder>\n <mo>KHI</mo>\n <mo>̲</mo>\n </munder>\n <mo>−</mo>\n </msup>\n <annotation>$\\underline{\\operatorname{KHI}}^-$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msup>\n <munder>\n <mo>KHM</mo>\n <mo>̲</mo>\n </munder>\n <mo>−</mo>\n </msup>\n <annotation>$\\underline{\\operatorname{KHM}}^-$</annotation>\n </semantics></math> for twist knots.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12346","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We unify two existing approaches to the tau invariants in instanton and monopole Floer theories, by identifying τ G $\tau _{\mathrm{G}}$ , defined by the second author via the minus flavors KHI ̲ $\underline{\operatorname{KHI}}^-$ and KHM ̲ $\underline{\operatorname{KHM}}^-$ of the knot homologies, with τ G $\tau ^\sharp _{\mathrm{G}}$ , defined by Baldwin and Sivek via cobordism maps of the 3-manifold homologies induced by knot surgeries. We exhibit several consequences, including a relationship with Heegaard Floer theory, and use our result to compute KHI ̲ $\underline{\operatorname{KHI}}^-$ and KHM ̲ $\underline{\operatorname{KHM}}^-$ for twist knots.

Abstract Image

分享
查看原文
论瞬子和单极浮子理论中的陶不变式
我们将第二作者通过结同构的减味 KHI ̲ - $\underline{operatorname{KHI}}^-$ 和 KHM ̲ - $\underline{operatorname{KHM}}^-$ 定义的 τ G $\tau _\{mathrm{G}}$ 与 Baldwin 和 Sivek 通过共线性定义的 τ G ♯ $\tau \sharp _\{mathrm{G}}$ 统一为瞬子和单极浮子理论中的头不变式的两种现有方法、G τ ♯ $\tau ^\sharp _{mathrm{G}}$,由鲍德温和西韦克通过结手术诱导的 3-manifold同调的共线性映射定义。我们展示了几个结果,包括与 Heegaard Floer 理论的关系,并用我们的结果计算了扭结的 KHI ̲ - $\underline{\operatorname{KHI}}^-$ 和 KHM ̲ - $\underline{\operatorname{KHM}}^-$ 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信