Involutions, links, and Floer cohomologies

IF 0.8 2区 数学 Q2 MATHEMATICS
Hokuto Konno, Jin Miyazawa, Masaki Taniguchi
{"title":"Involutions, links, and Floer cohomologies","authors":"Hokuto Konno,&nbsp;Jin Miyazawa,&nbsp;Masaki Taniguchi","doi":"10.1112/topo.12340","DOIUrl":null,"url":null,"abstract":"<p>We develop a version of Seiberg–Witten Floer cohomology/homotopy type for a <span></span><math>\n <semantics>\n <msup>\n <mi>spin</mi>\n <mi>c</mi>\n </msup>\n <annotation>${\\rm spin}^c$</annotation>\n </semantics></math> 4-manifold with boundary and with an involution that reverses the <span></span><math>\n <semantics>\n <msup>\n <mi>spin</mi>\n <mi>c</mi>\n </msup>\n <annotation>${\\rm spin}^c$</annotation>\n </semantics></math> structure, as well as a version of Floer cohomology/homotopy type for oriented links with nonzero determinant. This framework generalizes the previous work of the authors regarding Floer homotopy type for spin 3-manifolds with involutions and for knots. Based on this Floer cohomological setting, we prove Frøyshov-type inequalities that relate topological quantities of 4-manifolds with certain equivariant homology cobordism invariants. The inequalities and homology cobordism invariants have applications to the topology of unoriented surfaces, the Nielsen realization problem for nonspin 4-manifolds, and nonsmoothable unoriented surfaces in 4-manifolds.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 2","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12340","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We develop a version of Seiberg–Witten Floer cohomology/homotopy type for a spin c ${\rm spin}^c$ 4-manifold with boundary and with an involution that reverses the spin c ${\rm spin}^c$ structure, as well as a version of Floer cohomology/homotopy type for oriented links with nonzero determinant. This framework generalizes the previous work of the authors regarding Floer homotopy type for spin 3-manifolds with involutions and for knots. Based on this Floer cohomological setting, we prove Frøyshov-type inequalities that relate topological quantities of 4-manifolds with certain equivariant homology cobordism invariants. The inequalities and homology cobordism invariants have applications to the topology of unoriented surfaces, the Nielsen realization problem for nonspin 4-manifolds, and nonsmoothable unoriented surfaces in 4-manifolds.

卷积、链接和浮子同调
我们为一个有边界的自旋 c ${rm spin}^c$ 4-manifold,以及一个反转自旋 c ${rm spin}^c$ 结构的内卷,建立了一个版本的塞伯格-维滕(Seiberg-Witten)弗洛尔同构/同调类型,并为具有非零行列式的定向链接建立了一个版本的弗洛尔同构/同调类型。这个框架概括了作者之前关于有卷积的自旋 3-manifolds和结的浮子同调类型的工作。基于这种弗洛尔同调设置,我们证明了弗洛依肖夫型不等式,它将 4-manifold 的拓扑量与某些等变同调共线性不变式联系起来。这些不等式和同调共线性不变式可应用于无向曲面拓扑学、非旋4-manifolds的尼尔森实现问题以及4-manifolds中的非光滑无向曲面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Topology
Journal of Topology 数学-数学
CiteScore
2.00
自引率
9.10%
发文量
62
审稿时长
>12 weeks
期刊介绍: The Journal of Topology publishes papers of high quality and significance in topology, geometry and adjacent areas of mathematics. Interesting, important and often unexpected links connect topology and geometry with many other parts of mathematics, and the editors welcome submissions on exciting new advances concerning such links, as well as those in the core subject areas of the journal. The Journal of Topology was founded in 2008. It is published quarterly with articles published individually online prior to appearing in a printed issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信