卷积、链接和浮子同调

Pub Date : 2024-06-10 DOI:10.1112/topo.12340
Hokuto Konno, Jin Miyazawa, Masaki Taniguchi
{"title":"卷积、链接和浮子同调","authors":"Hokuto Konno,&nbsp;Jin Miyazawa,&nbsp;Masaki Taniguchi","doi":"10.1112/topo.12340","DOIUrl":null,"url":null,"abstract":"<p>We develop a version of Seiberg–Witten Floer cohomology/homotopy type for a <span></span><math>\n <semantics>\n <msup>\n <mi>spin</mi>\n <mi>c</mi>\n </msup>\n <annotation>${\\rm spin}^c$</annotation>\n </semantics></math> 4-manifold with boundary and with an involution that reverses the <span></span><math>\n <semantics>\n <msup>\n <mi>spin</mi>\n <mi>c</mi>\n </msup>\n <annotation>${\\rm spin}^c$</annotation>\n </semantics></math> structure, as well as a version of Floer cohomology/homotopy type for oriented links with nonzero determinant. This framework generalizes the previous work of the authors regarding Floer homotopy type for spin 3-manifolds with involutions and for knots. Based on this Floer cohomological setting, we prove Frøyshov-type inequalities that relate topological quantities of 4-manifolds with certain equivariant homology cobordism invariants. The inequalities and homology cobordism invariants have applications to the topology of unoriented surfaces, the Nielsen realization problem for nonspin 4-manifolds, and nonsmoothable unoriented surfaces in 4-manifolds.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Involutions, links, and Floer cohomologies\",\"authors\":\"Hokuto Konno,&nbsp;Jin Miyazawa,&nbsp;Masaki Taniguchi\",\"doi\":\"10.1112/topo.12340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We develop a version of Seiberg–Witten Floer cohomology/homotopy type for a <span></span><math>\\n <semantics>\\n <msup>\\n <mi>spin</mi>\\n <mi>c</mi>\\n </msup>\\n <annotation>${\\\\rm spin}^c$</annotation>\\n </semantics></math> 4-manifold with boundary and with an involution that reverses the <span></span><math>\\n <semantics>\\n <msup>\\n <mi>spin</mi>\\n <mi>c</mi>\\n </msup>\\n <annotation>${\\\\rm spin}^c$</annotation>\\n </semantics></math> structure, as well as a version of Floer cohomology/homotopy type for oriented links with nonzero determinant. This framework generalizes the previous work of the authors regarding Floer homotopy type for spin 3-manifolds with involutions and for knots. Based on this Floer cohomological setting, we prove Frøyshov-type inequalities that relate topological quantities of 4-manifolds with certain equivariant homology cobordism invariants. The inequalities and homology cobordism invariants have applications to the topology of unoriented surfaces, the Nielsen realization problem for nonspin 4-manifolds, and nonsmoothable unoriented surfaces in 4-manifolds.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.12340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们为一个有边界的自旋 c ${rm spin}^c$ 4-manifold,以及一个反转自旋 c ${rm spin}^c$ 结构的内卷,建立了一个版本的塞伯格-维滕(Seiberg-Witten)弗洛尔同构/同调类型,并为具有非零行列式的定向链接建立了一个版本的弗洛尔同构/同调类型。这个框架概括了作者之前关于有卷积的自旋 3-manifolds和结的浮子同调类型的工作。基于这种弗洛尔同调设置,我们证明了弗洛依肖夫型不等式,它将 4-manifold 的拓扑量与某些等变同调共线性不变式联系起来。这些不等式和同调共线性不变式可应用于无向曲面拓扑学、非旋4-manifolds的尼尔森实现问题以及4-manifolds中的非光滑无向曲面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Involutions, links, and Floer cohomologies

We develop a version of Seiberg–Witten Floer cohomology/homotopy type for a spin c ${\rm spin}^c$ 4-manifold with boundary and with an involution that reverses the spin c ${\rm spin}^c$ structure, as well as a version of Floer cohomology/homotopy type for oriented links with nonzero determinant. This framework generalizes the previous work of the authors regarding Floer homotopy type for spin 3-manifolds with involutions and for knots. Based on this Floer cohomological setting, we prove Frøyshov-type inequalities that relate topological quantities of 4-manifolds with certain equivariant homology cobordism invariants. The inequalities and homology cobordism invariants have applications to the topology of unoriented surfaces, the Nielsen realization problem for nonspin 4-manifolds, and nonsmoothable unoriented surfaces in 4-manifolds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信