{"title":"卷积、链接和浮子同调","authors":"Hokuto Konno, Jin Miyazawa, Masaki Taniguchi","doi":"10.1112/topo.12340","DOIUrl":null,"url":null,"abstract":"<p>We develop a version of Seiberg–Witten Floer cohomology/homotopy type for a <span></span><math>\n <semantics>\n <msup>\n <mi>spin</mi>\n <mi>c</mi>\n </msup>\n <annotation>${\\rm spin}^c$</annotation>\n </semantics></math> 4-manifold with boundary and with an involution that reverses the <span></span><math>\n <semantics>\n <msup>\n <mi>spin</mi>\n <mi>c</mi>\n </msup>\n <annotation>${\\rm spin}^c$</annotation>\n </semantics></math> structure, as well as a version of Floer cohomology/homotopy type for oriented links with nonzero determinant. This framework generalizes the previous work of the authors regarding Floer homotopy type for spin 3-manifolds with involutions and for knots. Based on this Floer cohomological setting, we prove Frøyshov-type inequalities that relate topological quantities of 4-manifolds with certain equivariant homology cobordism invariants. The inequalities and homology cobordism invariants have applications to the topology of unoriented surfaces, the Nielsen realization problem for nonspin 4-manifolds, and nonsmoothable unoriented surfaces in 4-manifolds.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 2","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Involutions, links, and Floer cohomologies\",\"authors\":\"Hokuto Konno, Jin Miyazawa, Masaki Taniguchi\",\"doi\":\"10.1112/topo.12340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We develop a version of Seiberg–Witten Floer cohomology/homotopy type for a <span></span><math>\\n <semantics>\\n <msup>\\n <mi>spin</mi>\\n <mi>c</mi>\\n </msup>\\n <annotation>${\\\\rm spin}^c$</annotation>\\n </semantics></math> 4-manifold with boundary and with an involution that reverses the <span></span><math>\\n <semantics>\\n <msup>\\n <mi>spin</mi>\\n <mi>c</mi>\\n </msup>\\n <annotation>${\\\\rm spin}^c$</annotation>\\n </semantics></math> structure, as well as a version of Floer cohomology/homotopy type for oriented links with nonzero determinant. This framework generalizes the previous work of the authors regarding Floer homotopy type for spin 3-manifolds with involutions and for knots. Based on this Floer cohomological setting, we prove Frøyshov-type inequalities that relate topological quantities of 4-manifolds with certain equivariant homology cobordism invariants. The inequalities and homology cobordism invariants have applications to the topology of unoriented surfaces, the Nielsen realization problem for nonspin 4-manifolds, and nonsmoothable unoriented surfaces in 4-manifolds.</p>\",\"PeriodicalId\":56114,\"journal\":{\"name\":\"Journal of Topology\",\"volume\":\"17 2\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Topology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.12340\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12340","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们为一个有边界的自旋 c ${rm spin}^c$ 4-manifold,以及一个反转自旋 c ${rm spin}^c$ 结构的内卷,建立了一个版本的塞伯格-维滕(Seiberg-Witten)弗洛尔同构/同调类型,并为具有非零行列式的定向链接建立了一个版本的弗洛尔同构/同调类型。这个框架概括了作者之前关于有卷积的自旋 3-manifolds和结的浮子同调类型的工作。基于这种弗洛尔同调设置,我们证明了弗洛依肖夫型不等式,它将 4-manifold 的拓扑量与某些等变同调共线性不变式联系起来。这些不等式和同调共线性不变式可应用于无向曲面拓扑学、非旋4-manifolds的尼尔森实现问题以及4-manifolds中的非光滑无向曲面。
We develop a version of Seiberg–Witten Floer cohomology/homotopy type for a 4-manifold with boundary and with an involution that reverses the structure, as well as a version of Floer cohomology/homotopy type for oriented links with nonzero determinant. This framework generalizes the previous work of the authors regarding Floer homotopy type for spin 3-manifolds with involutions and for knots. Based on this Floer cohomological setting, we prove Frøyshov-type inequalities that relate topological quantities of 4-manifolds with certain equivariant homology cobordism invariants. The inequalities and homology cobordism invariants have applications to the topology of unoriented surfaces, the Nielsen realization problem for nonspin 4-manifolds, and nonsmoothable unoriented surfaces in 4-manifolds.
期刊介绍:
The Journal of Topology publishes papers of high quality and significance in topology, geometry and adjacent areas of mathematics. Interesting, important and often unexpected links connect topology and geometry with many other parts of mathematics, and the editors welcome submissions on exciting new advances concerning such links, as well as those in the core subject areas of the journal.
The Journal of Topology was founded in 2008. It is published quarterly with articles published individually online prior to appearing in a printed issue.