{"title":"拉宾诺维茨-富卡亚范畴上的卡拉比尤结构","authors":"Hanwool Bae, Wonbo Jeong, Jongmyeong Kim","doi":"10.1112/topo.12361","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we prove that the derived Rabinowitz Fukaya category of a Liouville domain <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> of dimension <span></span><math>\n <semantics>\n <mrow>\n <mn>2</mn>\n <mi>n</mi>\n </mrow>\n <annotation>$2n$</annotation>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>−</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$(n-1)$</annotation>\n </semantics></math>-Calabi–Yau, assuming that the wrapped Fukaya category of <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> admits an at most countable set of Lagrangians that generate it and satisfy some finiteness condition on morphism spaces between them.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 4","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calabi–Yau structures on Rabinowitz Fukaya categories\",\"authors\":\"Hanwool Bae, Wonbo Jeong, Jongmyeong Kim\",\"doi\":\"10.1112/topo.12361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we prove that the derived Rabinowitz Fukaya category of a Liouville domain <span></span><math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$M$</annotation>\\n </semantics></math> of dimension <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>2</mn>\\n <mi>n</mi>\\n </mrow>\\n <annotation>$2n$</annotation>\\n </semantics></math> is <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(n-1)$</annotation>\\n </semantics></math>-Calabi–Yau, assuming that the wrapped Fukaya category of <span></span><math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$M$</annotation>\\n </semantics></math> admits an at most countable set of Lagrangians that generate it and satisfy some finiteness condition on morphism spaces between them.</p>\",\"PeriodicalId\":56114,\"journal\":{\"name\":\"Journal of Topology\",\"volume\":\"17 4\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Topology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.12361\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12361","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们证明了维数为 2 n $2n$ 的柳维尔域 M $M$ 的派生拉比诺维茨-富卡亚范畴是 ( n - 1 ) $(n-1)$ -卡拉比-尤(Calabi-Yau),假定 M $M$ 的包裹富卡亚范畴允许最多可数的拉格朗日集合,这些拉格朗日生成它并满足它们之间形态空间的某些有限性条件。
Calabi–Yau structures on Rabinowitz Fukaya categories
In this paper, we prove that the derived Rabinowitz Fukaya category of a Liouville domain of dimension is -Calabi–Yau, assuming that the wrapped Fukaya category of admits an at most countable set of Lagrangians that generate it and satisfy some finiteness condition on morphism spaces between them.
期刊介绍:
The Journal of Topology publishes papers of high quality and significance in topology, geometry and adjacent areas of mathematics. Interesting, important and often unexpected links connect topology and geometry with many other parts of mathematics, and the editors welcome submissions on exciting new advances concerning such links, as well as those in the core subject areas of the journal.
The Journal of Topology was founded in 2008. It is published quarterly with articles published individually online prior to appearing in a printed issue.