Jason Behrstock, Mark Hagen, Alexandre Martin, Alessandro Sisto
{"title":"分层双曲性的组合观点及其在映射类群商中的应用","authors":"Jason Behrstock, Mark Hagen, Alexandre Martin, Alessandro Sisto","doi":"10.1112/topo.12351","DOIUrl":null,"url":null,"abstract":"<p>We give a simple combinatorial criterion, in terms of an action on a hyperbolic simplicial complex, for a group to be hierarchically hyperbolic. We apply this to show that quotients of mapping class groups by large powers of Dehn twists are hierarchically hyperbolic (and even relatively hyperbolic in the genus 2 case). In genus at least three, there are no known infinite hyperbolic quotients of mapping class groups. However, using the hierarchically hyperbolic quotients we construct, we show, under a residual finiteness assumption, that mapping class groups have many nonelementary hyperbolic quotients. Using these quotients, we relate questions of Reid and Bridson–Reid–Wilton about finite quotients of mapping class groups to residual finiteness of specific hyperbolic groups.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A combinatorial take on hierarchical hyperbolicity and applications to quotients of mapping class groups\",\"authors\":\"Jason Behrstock, Mark Hagen, Alexandre Martin, Alessandro Sisto\",\"doi\":\"10.1112/topo.12351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We give a simple combinatorial criterion, in terms of an action on a hyperbolic simplicial complex, for a group to be hierarchically hyperbolic. We apply this to show that quotients of mapping class groups by large powers of Dehn twists are hierarchically hyperbolic (and even relatively hyperbolic in the genus 2 case). In genus at least three, there are no known infinite hyperbolic quotients of mapping class groups. However, using the hierarchically hyperbolic quotients we construct, we show, under a residual finiteness assumption, that mapping class groups have many nonelementary hyperbolic quotients. Using these quotients, we relate questions of Reid and Bridson–Reid–Wilton about finite quotients of mapping class groups to residual finiteness of specific hyperbolic groups.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.12351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A combinatorial take on hierarchical hyperbolicity and applications to quotients of mapping class groups
We give a simple combinatorial criterion, in terms of an action on a hyperbolic simplicial complex, for a group to be hierarchically hyperbolic. We apply this to show that quotients of mapping class groups by large powers of Dehn twists are hierarchically hyperbolic (and even relatively hyperbolic in the genus 2 case). In genus at least three, there are no known infinite hyperbolic quotients of mapping class groups. However, using the hierarchically hyperbolic quotients we construct, we show, under a residual finiteness assumption, that mapping class groups have many nonelementary hyperbolic quotients. Using these quotients, we relate questions of Reid and Bridson–Reid–Wilton about finite quotients of mapping class groups to residual finiteness of specific hyperbolic groups.