等变结上的结浮子同源性和外科手术

IF 0.8 2区 数学 Q2 MATHEMATICS
Abhishek Mallick
{"title":"等变结上的结浮子同源性和外科手术","authors":"Abhishek Mallick","doi":"10.1112/topo.70001","DOIUrl":null,"url":null,"abstract":"<p>Given an equivariant knot <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math> of order 2, we study the induced action of the symmetry on the knot Floer homology. We relate this action with the induced action of the symmetry on the Heegaard Floer homology of large surgeries on <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math>. This surgery formula can be thought of as an equivariant analog of the involutive large surgery formula proved by Hendricks and Manolescu. As a consequence, we obtain that for certain double branched covers of <span></span><math>\n <semantics>\n <msup>\n <mi>S</mi>\n <mn>3</mn>\n </msup>\n <annotation>$S^{3}$</annotation>\n </semantics></math> and corks, the induced action of the involution on Heegaard Floer homology can be identified with an action on the knot Floer homology. As an application, we calculate equivariant correction terms which are invariants of a generalized version of the spin rational homology cobordism group, and define two knot concordance invariants. We also compute the action of the symmetry on the knot Floer complex of <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math> for several equivariant knots.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 4","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.70001","citationCount":"0","resultStr":"{\"title\":\"Knot Floer homology and surgery on equivariant knots\",\"authors\":\"Abhishek Mallick\",\"doi\":\"10.1112/topo.70001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given an equivariant knot <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math> of order 2, we study the induced action of the symmetry on the knot Floer homology. We relate this action with the induced action of the symmetry on the Heegaard Floer homology of large surgeries on <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math>. This surgery formula can be thought of as an equivariant analog of the involutive large surgery formula proved by Hendricks and Manolescu. As a consequence, we obtain that for certain double branched covers of <span></span><math>\\n <semantics>\\n <msup>\\n <mi>S</mi>\\n <mn>3</mn>\\n </msup>\\n <annotation>$S^{3}$</annotation>\\n </semantics></math> and corks, the induced action of the involution on Heegaard Floer homology can be identified with an action on the knot Floer homology. As an application, we calculate equivariant correction terms which are invariants of a generalized version of the spin rational homology cobordism group, and define two knot concordance invariants. We also compute the action of the symmetry on the knot Floer complex of <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math> for several equivariant knots.</p>\",\"PeriodicalId\":56114,\"journal\":{\"name\":\"Journal of Topology\",\"volume\":\"17 4\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.70001\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Topology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.70001\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.70001","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定一个阶数为 2 的等变结 K $K$,我们研究对称性对结的弗洛尔同源性的诱导作用。我们将这一作用与对称性对 K $K$ 上大手术的 Heegaard Floer homology 的诱导作用联系起来。这个手术公式可以看作是亨德里克斯(Hendricks)和马诺列斯库(Manolescu)证明的渐开大手术公式的等变类似。因此,我们得到,对于 S 3 $S^{3}$ 的某些双支盖和软木塞,内卷对 Heegaard Floer homology 的诱导作用可以与对结 Floer homology 的作用相识别。作为应用,我们计算了等变修正项,它们是广义版本的自旋有理同调共线群的不变项,并定义了两个结协和不变项。我们还计算了几个等变结的对称性对 K $K$ 的结弗洛尔复数的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Knot Floer homology and surgery on equivariant knots

Knot Floer homology and surgery on equivariant knots

Given an equivariant knot K $K$ of order 2, we study the induced action of the symmetry on the knot Floer homology. We relate this action with the induced action of the symmetry on the Heegaard Floer homology of large surgeries on K $K$ . This surgery formula can be thought of as an equivariant analog of the involutive large surgery formula proved by Hendricks and Manolescu. As a consequence, we obtain that for certain double branched covers of S 3 $S^{3}$ and corks, the induced action of the involution on Heegaard Floer homology can be identified with an action on the knot Floer homology. As an application, we calculate equivariant correction terms which are invariants of a generalized version of the spin rational homology cobordism group, and define two knot concordance invariants. We also compute the action of the symmetry on the knot Floer complex of K $K$ for several equivariant knots.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Topology
Journal of Topology 数学-数学
CiteScore
2.00
自引率
9.10%
发文量
62
审稿时长
>12 weeks
期刊介绍: The Journal of Topology publishes papers of high quality and significance in topology, geometry and adjacent areas of mathematics. Interesting, important and often unexpected links connect topology and geometry with many other parts of mathematics, and the editors welcome submissions on exciting new advances concerning such links, as well as those in the core subject areas of the journal. The Journal of Topology was founded in 2008. It is published quarterly with articles published individually online prior to appearing in a printed issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信