A realisation result for moduli spaces of group actions on the line

IF 0.8 2区 数学 Q2 MATHEMATICS
Joaquín Brum, Nicolás Matte Bon, Cristóbal Rivas, Michele Triestino
{"title":"A realisation result for moduli spaces of group actions on the line","authors":"Joaquín Brum,&nbsp;Nicolás Matte Bon,&nbsp;Cristóbal Rivas,&nbsp;Michele Triestino","doi":"10.1112/topo.12357","DOIUrl":null,"url":null,"abstract":"<p>Given a finitely generated group <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>, the possible actions of <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> on the real line (without global fixed points), considered up to semi-conjugacy, can be encoded by the space of orbits of a flow on a compact space <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>Y</mi>\n <mo>,</mo>\n <mi>Φ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(Y, \\Phi)$</annotation>\n </semantics></math> naturally associated with <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> and uniquely defined up to flow equivalence, that we call the <i>Deroin space</i> of <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>. We show a realisation result: every expansive flow <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>Y</mi>\n <mo>,</mo>\n <mi>Φ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(Y, \\Phi)$</annotation>\n </semantics></math> on a compact metrisable space of topological dimension 1, satisfying some mild additional assumptions, arises as the Deroin space of a finitely generated group. This is proven by identifying the Deroin space of an explicit family of groups acting on suspension flows of subshifts, which is a variant of a construction introduced by the second and fourth authors. This result provides a source of examples of finitely generated groups satisfying various new phenomena for actions on the line, related to their rigidity/flexibility properties and to the structure of (path-)connected components of the space of actions.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 4","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12357","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a finitely generated group G $G$ , the possible actions of G $G$ on the real line (without global fixed points), considered up to semi-conjugacy, can be encoded by the space of orbits of a flow on a compact space ( Y , Φ ) $(Y, \Phi)$ naturally associated with G $G$ and uniquely defined up to flow equivalence, that we call the Deroin space of G $G$ . We show a realisation result: every expansive flow ( Y , Φ ) $(Y, \Phi)$ on a compact metrisable space of topological dimension 1, satisfying some mild additional assumptions, arises as the Deroin space of a finitely generated group. This is proven by identifying the Deroin space of an explicit family of groups acting on suspension flows of subshifts, which is a variant of a construction introduced by the second and fourth authors. This result provides a source of examples of finitely generated groups satisfying various new phenomena for actions on the line, related to their rigidity/flexibility properties and to the structure of (path-)connected components of the space of actions.

线上群作用模空间的实现结果
给定一个有限生成的群 G $G$,G $G$在实线(无全局定点)上的可能作用,考虑到半共轭,可以用一个紧凑空间 ( Y , Φ ) $(Y, \Phi)$ 上的流的轨道空间来编码,这个紧凑空间与 G $G$自然相关,并且唯一定义到流等价,我们称之为 G $G$的 Deroin 空间。我们展示了一个实现结果:在拓扑维度为 1 的紧凑可元空间上的每一个扩张流 ( Y , Φ ) $(Y, \Phi)$ 在满足一些温和的附加假设后,都会作为有限生成群的 Deroin 空间出现。这是通过识别作用于子转移悬浮流的显式群族的 Deroin 空间来证明的,这是第二和第四作者提出的一种构造的变体。这一结果提供了有限生成的群满足直线上作用的各种新现象的例子,这些新现象与它们的刚性/柔性特性和作用空间的(路径)连接成分的结构有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Topology
Journal of Topology 数学-数学
CiteScore
2.00
自引率
9.10%
发文量
62
审稿时长
>12 weeks
期刊介绍: The Journal of Topology publishes papers of high quality and significance in topology, geometry and adjacent areas of mathematics. Interesting, important and often unexpected links connect topology and geometry with many other parts of mathematics, and the editors welcome submissions on exciting new advances concerning such links, as well as those in the core subject areas of the journal. The Journal of Topology was founded in 2008. It is published quarterly with articles published individually online prior to appearing in a printed issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信