Structure of quasiconvex virtual joins

IF 0.8 2区 数学 Q2 MATHEMATICS
Lawk Mineh
{"title":"Structure of quasiconvex virtual joins","authors":"Lawk Mineh","doi":"10.1112/topo.70021","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> be a relatively hyperbolic group and let <span></span><math>\n <semantics>\n <mi>Q</mi>\n <annotation>$Q$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math> be relatively quasiconvex subgroups. It is known that there are many pairs of finite index subgroups <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>Q</mi>\n <mo>′</mo>\n </msup>\n <msub>\n <mo>⩽</mo>\n <mi>f</mi>\n </msub>\n <mi>Q</mi>\n </mrow>\n <annotation>$Q^{\\prime } \\leqslant _f Q$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>R</mi>\n <mo>′</mo>\n </msup>\n <msub>\n <mo>⩽</mo>\n <mi>f</mi>\n </msub>\n <mi>R</mi>\n </mrow>\n <annotation>$R^{\\prime } \\leqslant _f R$</annotation>\n </semantics></math> such that the subgroup join <span></span><math>\n <semantics>\n <mrow>\n <mo>⟨</mo>\n <msup>\n <mi>Q</mi>\n <mo>′</mo>\n </msup>\n <mo>,</mo>\n <msup>\n <mi>R</mi>\n <mo>′</mo>\n </msup>\n <mo>⟩</mo>\n </mrow>\n <annotation>$\\langle Q^{\\prime }, R^{\\prime } \\rangle$</annotation>\n </semantics></math> is also relatively quasiconvex, given suitable assumptions on the profinite topology of <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>. We show that the intersections of such joins with maximal parabolic subgroups of <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> are themselves joins of intersections of the factor subgroups <span></span><math>\n <semantics>\n <msup>\n <mi>Q</mi>\n <mo>′</mo>\n </msup>\n <annotation>$Q^{\\prime }$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mo>′</mo>\n </msup>\n <annotation>$R^{\\prime }$</annotation>\n </semantics></math> with maximal parabolic subgroups of <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>. As a consequence, we show that quasiconvex subgroups whose parabolic subgroups are almost compatible have finite index subgroups whose parabolic subgroups are compatible, and provide a combination theorem for such subgroups.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"18 2","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.70021","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.70021","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let G $G$ be a relatively hyperbolic group and let Q $Q$ and R $R$ be relatively quasiconvex subgroups. It is known that there are many pairs of finite index subgroups Q f Q $Q^{\prime } \leqslant _f Q$ and R f R $R^{\prime } \leqslant _f R$ such that the subgroup join Q , R $\langle Q^{\prime }, R^{\prime } \rangle$ is also relatively quasiconvex, given suitable assumptions on the profinite topology of G $G$ . We show that the intersections of such joins with maximal parabolic subgroups of G $G$ are themselves joins of intersections of the factor subgroups Q $Q^{\prime }$ and R $R^{\prime }$ with maximal parabolic subgroups of G $G$ . As a consequence, we show that quasiconvex subgroups whose parabolic subgroups are almost compatible have finite index subgroups whose parabolic subgroups are compatible, and provide a combination theorem for such subgroups.

Abstract Image

拟凸虚连接的结构
设G $G$为相对双曲群,设Q $Q$和R $R$为相对拟凸子群。已知有许多对有限指标子群Q ‘≤f Q $Q^{\prime } \leqslant _f Q$和R ’≤f R $R^{\prime } \leqslant _f R$使得子群连接⟨Q ',R '⟩$\langle Q^{\prime }, R^{\prime } \rangle$也是相对拟凸的,给定对G $G$的无限拓扑的适当假设。我们证明了与G $G$的极大抛物子群的这种联接的交集本身就是因子子群Q ‘ $Q^{\prime }$和R ’的交集的交集。$R^{\prime }$与G的极大抛物子群$G$。因此,我们证明了抛物子群几乎相容的拟凸子群具有抛物子群相容的有限指数子群,并给出了这类子群的组合定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Topology
Journal of Topology 数学-数学
CiteScore
2.00
自引率
9.10%
发文量
62
审稿时长
>12 weeks
期刊介绍: The Journal of Topology publishes papers of high quality and significance in topology, geometry and adjacent areas of mathematics. Interesting, important and often unexpected links connect topology and geometry with many other parts of mathematics, and the editors welcome submissions on exciting new advances concerning such links, as well as those in the core subject areas of the journal. The Journal of Topology was founded in 2008. It is published quarterly with articles published individually online prior to appearing in a printed issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信