用相对交映同调表征重度

Pub Date : 2024-03-09 DOI:10.1112/topo.12327
Cheuk Yu Mak, Yuhan Sun, Umut Varolgunes
{"title":"用相对交映同调表征重度","authors":"Cheuk Yu Mak,&nbsp;Yuhan Sun,&nbsp;Umut Varolgunes","doi":"10.1112/topo.12327","DOIUrl":null,"url":null,"abstract":"<p>For a compact subset <math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math> of a closed symplectic manifold <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>M</mi>\n <mo>,</mo>\n <mi>ω</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(M, \\omega)$</annotation>\n </semantics></math>, we prove that <math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math> is heavy if and only if its relative symplectic cohomology over the Novikov field is nonzero. As an application, we show that if two compact sets are not heavy and Poisson commuting, then their union is also not heavy. A discussion on superheaviness together with some partial results is also included.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12327","citationCount":"0","resultStr":"{\"title\":\"A characterization of heaviness in terms of relative symplectic cohomology\",\"authors\":\"Cheuk Yu Mak,&nbsp;Yuhan Sun,&nbsp;Umut Varolgunes\",\"doi\":\"10.1112/topo.12327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a compact subset <math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math> of a closed symplectic manifold <math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>M</mi>\\n <mo>,</mo>\\n <mi>ω</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(M, \\\\omega)$</annotation>\\n </semantics></math>, we prove that <math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math> is heavy if and only if its relative symplectic cohomology over the Novikov field is nonzero. As an application, we show that if two compact sets are not heavy and Poisson commuting, then their union is also not heavy. A discussion on superheaviness together with some partial results is also included.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12327\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.12327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于封闭交映流形 ( M , ω ) $(M, \omega)$ 的紧凑子集 K $K$ ,我们证明当且仅当 K $K$ 在诺维科夫场上的相对交映同调非零时,K $K$ 是重的。作为应用,我们证明了如果两个紧凑集不重且泊松换向,那么它们的联合也不重。此外,我们还讨论了超重性以及一些局部结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A characterization of heaviness in terms of relative symplectic cohomology

分享
查看原文
A characterization of heaviness in terms of relative symplectic cohomology

For a compact subset K $K$ of a closed symplectic manifold ( M , ω ) $(M, \omega)$ , we prove that K $K$ is heavy if and only if its relative symplectic cohomology over the Novikov field is nonzero. As an application, we show that if two compact sets are not heavy and Poisson commuting, then their union is also not heavy. A discussion on superheaviness together with some partial results is also included.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信