{"title":"用相对交映同调表征重度","authors":"Cheuk Yu Mak, Yuhan Sun, Umut Varolgunes","doi":"10.1112/topo.12327","DOIUrl":null,"url":null,"abstract":"<p>For a compact subset <math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math> of a closed symplectic manifold <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>M</mi>\n <mo>,</mo>\n <mi>ω</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(M, \\omega)$</annotation>\n </semantics></math>, we prove that <math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math> is heavy if and only if its relative symplectic cohomology over the Novikov field is nonzero. As an application, we show that if two compact sets are not heavy and Poisson commuting, then their union is also not heavy. A discussion on superheaviness together with some partial results is also included.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12327","citationCount":"0","resultStr":"{\"title\":\"A characterization of heaviness in terms of relative symplectic cohomology\",\"authors\":\"Cheuk Yu Mak, Yuhan Sun, Umut Varolgunes\",\"doi\":\"10.1112/topo.12327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a compact subset <math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math> of a closed symplectic manifold <math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>M</mi>\\n <mo>,</mo>\\n <mi>ω</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(M, \\\\omega)$</annotation>\\n </semantics></math>, we prove that <math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math> is heavy if and only if its relative symplectic cohomology over the Novikov field is nonzero. As an application, we show that if two compact sets are not heavy and Poisson commuting, then their union is also not heavy. A discussion on superheaviness together with some partial results is also included.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12327\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.12327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
对于封闭交映流形 ( M , ω ) $(M, \omega)$ 的紧凑子集 K $K$ ,我们证明当且仅当 K $K$ 在诺维科夫场上的相对交映同调非零时,K $K$ 是重的。作为应用,我们证明了如果两个紧凑集不重且泊松换向,那么它们的联合也不重。此外,我们还讨论了超重性以及一些局部结果。
A characterization of heaviness in terms of relative symplectic cohomology
For a compact subset of a closed symplectic manifold , we prove that is heavy if and only if its relative symplectic cohomology over the Novikov field is nonzero. As an application, we show that if two compact sets are not heavy and Poisson commuting, then their union is also not heavy. A discussion on superheaviness together with some partial results is also included.