接触结构横向嵌入的 h $h$ 原则

IF 0.8 2区 数学 Q2 MATHEMATICS
Robert Cardona, Francisco Presas
{"title":"接触结构横向嵌入的 h $h$ 原则","authors":"Robert Cardona,&nbsp;Francisco Presas","doi":"10.1112/topo.12326","DOIUrl":null,"url":null,"abstract":"<p>Given a class of embeddings into a contact or a symplectic manifold, we give a sufficient condition, that we call isocontact or isosymplectic realization, for this class to satisfy a general <math>\n <semantics>\n <mi>h</mi>\n <annotation>$h$</annotation>\n </semantics></math>-principle. The flexibility follows from the <math>\n <semantics>\n <mi>h</mi>\n <annotation>$h$</annotation>\n </semantics></math>-principles for isocontact and isosymplectic embeddings, it provides a framework for classical results, and we give two new applications. Our main result is that embeddings transverse to a contact structure satisfy a full <math>\n <semantics>\n <mi>h</mi>\n <annotation>$h$</annotation>\n </semantics></math>-principle in two cases: if the complement of the embedding is overtwisted, or when the intersection of the image of the formal derivative with the contact structure is strictly contained in a proper symplectic subbundle. We illustrate the general framework on symplectic manifolds by studying the universality of Hamiltonian dynamics on regular level sets via a class of embeddings.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An \\n \\n h\\n $h$\\n -principle for embeddings transverse to a contact structure\",\"authors\":\"Robert Cardona,&nbsp;Francisco Presas\",\"doi\":\"10.1112/topo.12326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given a class of embeddings into a contact or a symplectic manifold, we give a sufficient condition, that we call isocontact or isosymplectic realization, for this class to satisfy a general <math>\\n <semantics>\\n <mi>h</mi>\\n <annotation>$h$</annotation>\\n </semantics></math>-principle. The flexibility follows from the <math>\\n <semantics>\\n <mi>h</mi>\\n <annotation>$h$</annotation>\\n </semantics></math>-principles for isocontact and isosymplectic embeddings, it provides a framework for classical results, and we give two new applications. Our main result is that embeddings transverse to a contact structure satisfy a full <math>\\n <semantics>\\n <mi>h</mi>\\n <annotation>$h$</annotation>\\n </semantics></math>-principle in two cases: if the complement of the embedding is overtwisted, or when the intersection of the image of the formal derivative with the contact structure is strictly contained in a proper symplectic subbundle. We illustrate the general framework on symplectic manifolds by studying the universality of Hamiltonian dynamics on regular level sets via a class of embeddings.</p>\",\"PeriodicalId\":56114,\"journal\":{\"name\":\"Journal of Topology\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Topology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.12326\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12326","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定一类嵌入到接触流形或交映流形的嵌入,我们给出一个充分条件,我们称之为等接触或等交映实现,使这一类嵌入满足一般的 h $h$ 原则。这种灵活性来自于等接触和等折射嵌入的 h $h$ 原则,它为经典结果提供了一个框架,我们还给出了两个新的应用。我们的主要结果是,在两种情况下,横向于接触结构的嵌入满足完整的 h $h$ 原则:如果嵌入的补集是超扭曲的,或者形式导数的图像与接触结构的交集严格包含在适当的交映子束带中。我们通过一类嵌入来研究正则水平集上哈密顿动力学的普遍性,以此说明交映流形上的一般框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An h $h$ -principle for embeddings transverse to a contact structure

Given a class of embeddings into a contact or a symplectic manifold, we give a sufficient condition, that we call isocontact or isosymplectic realization, for this class to satisfy a general h $h$ -principle. The flexibility follows from the h $h$ -principles for isocontact and isosymplectic embeddings, it provides a framework for classical results, and we give two new applications. Our main result is that embeddings transverse to a contact structure satisfy a full h $h$ -principle in two cases: if the complement of the embedding is overtwisted, or when the intersection of the image of the formal derivative with the contact structure is strictly contained in a proper symplectic subbundle. We illustrate the general framework on symplectic manifolds by studying the universality of Hamiltonian dynamics on regular level sets via a class of embeddings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Topology
Journal of Topology 数学-数学
CiteScore
2.00
自引率
9.10%
发文量
62
审稿时长
>12 weeks
期刊介绍: The Journal of Topology publishes papers of high quality and significance in topology, geometry and adjacent areas of mathematics. Interesting, important and often unexpected links connect topology and geometry with many other parts of mathematics, and the editors welcome submissions on exciting new advances concerning such links, as well as those in the core subject areas of the journal. The Journal of Topology was founded in 2008. It is published quarterly with articles published individually online prior to appearing in a printed issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信