On fillings of contact links of quotient singularities

Pub Date : 2024-03-09 DOI:10.1112/topo.12329
Zhengyi Zhou
{"title":"On fillings of contact links of quotient singularities","authors":"Zhengyi Zhou","doi":"10.1112/topo.12329","DOIUrl":null,"url":null,"abstract":"<p>We study several aspects of fillings for links of general isolated quotient singularities using Floer theory, including co-fillings, Weinstein fillings, strong fillings, exact fillings and exact orbifold fillings, focusing on the non-existence of exact fillings of contact links of isolated terminal quotient singularities. We provide an extensive list of isolated terminal quotient singularities whose contact links are not exactly fillable, including <math>\n <semantics>\n <mrow>\n <msup>\n <mi>C</mi>\n <mi>n</mi>\n </msup>\n <mo>/</mo>\n <mrow>\n <mo>(</mo>\n <mi>Z</mi>\n <mo>/</mo>\n <mn>2</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>${\\mathbb {C}}^n/({\\mathbb {Z}}/2)$</annotation>\n </semantics></math> for <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>⩾</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$n\\geqslant 3$</annotation>\n </semantics></math>, which settles a conjecture of Eliashberg, quotient singularities from general cyclic group actions and finite subgroups of <math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mi>U</mi>\n <mo>(</mo>\n <mn>2</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$SU(2)$</annotation>\n </semantics></math>, and all terminal quotient singularities in complex dimension 3. We also obtain uniqueness of the <i>orbifold</i> diffeomorphism type of <i>exact orbifold fillings</i> of contact links of some isolated terminal quotient singularities.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study several aspects of fillings for links of general isolated quotient singularities using Floer theory, including co-fillings, Weinstein fillings, strong fillings, exact fillings and exact orbifold fillings, focusing on the non-existence of exact fillings of contact links of isolated terminal quotient singularities. We provide an extensive list of isolated terminal quotient singularities whose contact links are not exactly fillable, including C n / ( Z / 2 ) ${\mathbb {C}}^n/({\mathbb {Z}}/2)$ for n 3 $n\geqslant 3$ , which settles a conjecture of Eliashberg, quotient singularities from general cyclic group actions and finite subgroups of S U ( 2 ) $SU(2)$ , and all terminal quotient singularities in complex dimension 3. We also obtain uniqueness of the orbifold diffeomorphism type of exact orbifold fillings of contact links of some isolated terminal quotient singularities.

分享
查看原文
论商数奇点接触链路的填充
我们用弗洛尔理论研究了一般孤立商奇点的链接填充的几个方面,包括共填充、韦恩斯坦填充、强填充、精确填充和精确轨道填充,重点研究了孤立末端商奇点的接触链接不存在精确填充的问题。我们列举了大量接触链接不可精确填充的孤立末端商奇点,其中包括 n ⩾ 3 $n\geqslant 3$ 时的 C n / ( Z / 2 ) ${\mathbb {C}}^n/({\mathbb {Z}}/2)$ 、这解决了埃利亚斯伯格的猜想、来自一般循环群作用和 S U ( 2 ) $SU(2)$的有限子群的商奇异点,以及复维度 3 中的所有末端商奇异点。我们还得到了一些孤立的末端商奇点的接触链接的精确球面填充的球面衍射类型的唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信