奇维流形差分同调的一些理性同调计算

IF 0.8 2区 数学 Q2 MATHEMATICS
Johannes Ebert, Jens Reinhold
{"title":"奇维流形差分同调的一些理性同调计算","authors":"Johannes Ebert,&nbsp;Jens Reinhold","doi":"10.1112/topo.12324","DOIUrl":null,"url":null,"abstract":"<p>We calculate the rational cohomology of the classifying space of the diffeomorphism group of the manifolds <math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>U</mi>\n <mrow>\n <mi>g</mi>\n <mo>,</mo>\n <mn>1</mn>\n </mrow>\n <mi>n</mi>\n </msubsup>\n <mo>:</mo>\n <mo>=</mo>\n <msup>\n <mo>#</mo>\n <mi>g</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>S</mi>\n <mi>n</mi>\n </msup>\n <mo>×</mo>\n <msup>\n <mi>S</mi>\n <mrow>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mo>)</mo>\n </mrow>\n <mo>∖</mo>\n <mi>int</mi>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>D</mi>\n <mrow>\n <mn>2</mn>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$U_{g,1}^n:= \\#^g(S^n \\times S^{n+1})\\setminus \\mathrm{int}(D^{2n+1})$</annotation>\n </semantics></math>, for large <math>\n <semantics>\n <mi>g</mi>\n <annotation>$g$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>, up to degree <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$n-3$</annotation>\n </semantics></math>. The answer is that it is a free graded commutative algebra on an appropriate set of Miller–Morita–Mumford classes. Our proof goes through the classical three-step procedure: (a) compute the cohomology of the homotopy automorphisms, (b) use surgery to compare this to block diffeomorphisms, and (c) use pseudoisotopy theory and algebraic <math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math>-theory to get at actual diffeomorphism groups.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12324","citationCount":"0","resultStr":"{\"title\":\"Some rational homology computations for diffeomorphisms of odd-dimensional manifolds\",\"authors\":\"Johannes Ebert,&nbsp;Jens Reinhold\",\"doi\":\"10.1112/topo.12324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We calculate the rational cohomology of the classifying space of the diffeomorphism group of the manifolds <math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>U</mi>\\n <mrow>\\n <mi>g</mi>\\n <mo>,</mo>\\n <mn>1</mn>\\n </mrow>\\n <mi>n</mi>\\n </msubsup>\\n <mo>:</mo>\\n <mo>=</mo>\\n <msup>\\n <mo>#</mo>\\n <mi>g</mi>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>S</mi>\\n <mi>n</mi>\\n </msup>\\n <mo>×</mo>\\n <msup>\\n <mi>S</mi>\\n <mrow>\\n <mi>n</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n <mo>∖</mo>\\n <mi>int</mi>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>D</mi>\\n <mrow>\\n <mn>2</mn>\\n <mi>n</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$U_{g,1}^n:= \\\\#^g(S^n \\\\times S^{n+1})\\\\setminus \\\\mathrm{int}(D^{2n+1})$</annotation>\\n </semantics></math>, for large <math>\\n <semantics>\\n <mi>g</mi>\\n <annotation>$g$</annotation>\\n </semantics></math> and <math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math>, up to degree <math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$n-3$</annotation>\\n </semantics></math>. The answer is that it is a free graded commutative algebra on an appropriate set of Miller–Morita–Mumford classes. Our proof goes through the classical three-step procedure: (a) compute the cohomology of the homotopy automorphisms, (b) use surgery to compare this to block diffeomorphisms, and (c) use pseudoisotopy theory and algebraic <math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math>-theory to get at actual diffeomorphism groups.</p>\",\"PeriodicalId\":56114,\"journal\":{\"name\":\"Journal of Topology\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12324\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Topology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.12324\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12324","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们计算流形差分群分类空间的有理同调 U g , 1 n : = # g ( S n × S n + 1 ) ∖ int ( D 2 n + 1 ) $U_{g,1}^n:= \#^g(S^n \times S^{n+1})\setminus \mathrm{int}(D^{2n+1})$,对于大g $g$和n $n$,直到度数n - 3 $n-3$。答案是,它是一个在适当的米勒-莫里塔-蒙福德类集合上的自由分级交换代数。我们的证明经历了经典的三步程序:(a) 计算同调自形体的同调;(b) 利用外科手术将其与块差形体进行比较;(c) 利用伪拟态理论和代数 K $K$ 理论得到实际的差形群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Some rational homology computations for diffeomorphisms of odd-dimensional manifolds

Some rational homology computations for diffeomorphisms of odd-dimensional manifolds

We calculate the rational cohomology of the classifying space of the diffeomorphism group of the manifolds U g , 1 n : = # g ( S n × S n + 1 ) int ( D 2 n + 1 ) $U_{g,1}^n:= \#^g(S^n \times S^{n+1})\setminus \mathrm{int}(D^{2n+1})$ , for large g $g$ and n $n$ , up to degree n 3 $n-3$ . The answer is that it is a free graded commutative algebra on an appropriate set of Miller–Morita–Mumford classes. Our proof goes through the classical three-step procedure: (a) compute the cohomology of the homotopy automorphisms, (b) use surgery to compare this to block diffeomorphisms, and (c) use pseudoisotopy theory and algebraic K $K$ -theory to get at actual diffeomorphism groups.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Topology
Journal of Topology 数学-数学
CiteScore
2.00
自引率
9.10%
发文量
62
审稿时长
>12 weeks
期刊介绍: The Journal of Topology publishes papers of high quality and significance in topology, geometry and adjacent areas of mathematics. Interesting, important and often unexpected links connect topology and geometry with many other parts of mathematics, and the editors welcome submissions on exciting new advances concerning such links, as well as those in the core subject areas of the journal. The Journal of Topology was founded in 2008. It is published quarterly with articles published individually online prior to appearing in a printed issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信