Equivariant Lagrangian Floer homology via cotangent bundles of E G N $EG_N$

Pub Date : 2024-03-12 DOI:10.1112/topo.12328
Guillem Cazassus
{"title":"Equivariant Lagrangian Floer homology via cotangent bundles of \n \n \n E\n \n G\n N\n \n \n $EG_N$","authors":"Guillem Cazassus","doi":"10.1112/topo.12328","DOIUrl":null,"url":null,"abstract":"<p>We provide a construction of equivariant Lagrangian Floer homology <math>\n <semantics>\n <mrow>\n <mi>H</mi>\n <msub>\n <mi>F</mi>\n <mi>G</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>L</mi>\n <mn>0</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>L</mi>\n <mn>1</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$HF_G(L_0, L_1)$</annotation>\n </semantics></math>, for a compact Lie group <math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> acting on a symplectic manifold <math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> in a Hamiltonian fashion, and a pair of <math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>-Lagrangian submanifolds <math>\n <semantics>\n <mrow>\n <msub>\n <mi>L</mi>\n <mn>0</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>L</mi>\n <mn>1</mn>\n </msub>\n <mo>⊂</mo>\n <mi>M</mi>\n </mrow>\n <annotation>$L_0, L_1 \\subset M$</annotation>\n </semantics></math>. We do so by using symplectic homotopy quotients involving cotangent bundles of an approximation of <math>\n <semantics>\n <mrow>\n <mi>E</mi>\n <mi>G</mi>\n </mrow>\n <annotation>$EG$</annotation>\n </semantics></math>. Our construction relies on Wehrheim and Woodward's theory of quilts, and the telescope construction. We show that these groups are independent of the auxiliary choices involved in their construction, and are <math>\n <semantics>\n <mrow>\n <msup>\n <mi>H</mi>\n <mo>∗</mo>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>B</mi>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$H^*(BG)$</annotation>\n </semantics></math>-bimodules. In the case when <math>\n <semantics>\n <mrow>\n <msub>\n <mi>L</mi>\n <mn>0</mn>\n </msub>\n <mo>=</mo>\n <msub>\n <mi>L</mi>\n <mn>1</mn>\n </msub>\n </mrow>\n <annotation>$L_0 = L_1$</annotation>\n </semantics></math>, we show that their chain complex <math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <msub>\n <mi>F</mi>\n <mi>G</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>L</mi>\n <mn>0</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>L</mi>\n <mn>1</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$CF_G(L_0, L_1)$</annotation>\n </semantics></math> is homotopy equivalent to the equivariant Morse complex of <math>\n <semantics>\n <msub>\n <mi>L</mi>\n <mn>0</mn>\n </msub>\n <annotation>$L_0$</annotation>\n </semantics></math>. Furthermore, if zero is a regular value of the moment map <math>\n <semantics>\n <mi>μ</mi>\n <annotation>$\\mu$</annotation>\n </semantics></math> and if <math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> acts freely on <math>\n <semantics>\n <mrow>\n <msup>\n <mi>μ</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <mn>0</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mu ^{-1}(0)$</annotation>\n </semantics></math>, we construct two ‘Kirwan morphisms’ from <math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <msub>\n <mi>F</mi>\n <mi>G</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>L</mi>\n <mn>0</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>L</mi>\n <mn>1</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$CF_G(L_0, L_1)$</annotation>\n </semantics></math> to <math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <mi>F</mi>\n <mo>(</mo>\n <msub>\n <mi>L</mi>\n <mn>0</mn>\n </msub>\n <mo>/</mo>\n <mi>G</mi>\n <mo>,</mo>\n <msub>\n <mi>L</mi>\n <mn>1</mn>\n </msub>\n <mo>/</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$CF(L_0/G, L_1/G)$</annotation>\n </semantics></math> (respectively, from <math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <mi>F</mi>\n <mo>(</mo>\n <msub>\n <mi>L</mi>\n <mn>0</mn>\n </msub>\n <mo>/</mo>\n <mi>G</mi>\n <mo>,</mo>\n <msub>\n <mi>L</mi>\n <mn>1</mn>\n </msub>\n <mo>/</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$CF(L_0/G, L_1/G)$</annotation>\n </semantics></math> to <math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <msub>\n <mi>F</mi>\n <mi>G</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>L</mi>\n <mn>0</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>L</mi>\n <mn>1</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$CF_G(L_0, L_1)$</annotation>\n </semantics></math>). Our construction applies to the exact and monotone settings, as well as in the setting of the extended moduli space of flat <math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mi>U</mi>\n <mo>(</mo>\n <mn>2</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$SU(2)$</annotation>\n </semantics></math>-connections of a Riemann surface, considered in Manolescu and Woodward's work. Applied to the latter setting, our construction provides an equivariant symplectic side for the Atiyah–Floer conjecture.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12328","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We provide a construction of equivariant Lagrangian Floer homology H F G ( L 0 , L 1 ) $HF_G(L_0, L_1)$ , for a compact Lie group G $G$ acting on a symplectic manifold M $M$ in a Hamiltonian fashion, and a pair of G $G$ -Lagrangian submanifolds L 0 , L 1 M $L_0, L_1 \subset M$ . We do so by using symplectic homotopy quotients involving cotangent bundles of an approximation of E G $EG$ . Our construction relies on Wehrheim and Woodward's theory of quilts, and the telescope construction. We show that these groups are independent of the auxiliary choices involved in their construction, and are H ( B G ) $H^*(BG)$ -bimodules. In the case when L 0 = L 1 $L_0 = L_1$ , we show that their chain complex C F G ( L 0 , L 1 ) $CF_G(L_0, L_1)$ is homotopy equivalent to the equivariant Morse complex of L 0 $L_0$ . Furthermore, if zero is a regular value of the moment map μ $\mu$ and if G $G$ acts freely on μ 1 ( 0 ) $\mu ^{-1}(0)$ , we construct two ‘Kirwan morphisms’ from C F G ( L 0 , L 1 ) $CF_G(L_0, L_1)$ to C F ( L 0 / G , L 1 / G ) $CF(L_0/G, L_1/G)$ (respectively, from C F ( L 0 / G , L 1 / G ) $CF(L_0/G, L_1/G)$ to C F G ( L 0 , L 1 ) $CF_G(L_0, L_1)$ ). Our construction applies to the exact and monotone settings, as well as in the setting of the extended moduli space of flat S U ( 2 ) $SU(2)$ -connections of a Riemann surface, considered in Manolescu and Woodward's work. Applied to the latter setting, our construction provides an equivariant symplectic side for the Atiyah–Floer conjecture.

Abstract Image

分享
查看原文
通过 E G N $EG_N$ 共切束的等变拉格朗日浮子同源性
对于以哈密尔顿方式作用于交直流形 M $M$ 的紧凑李群 G $G$ 以及一对 G $G$ - 拉格朗日子曲面 L 0 , L 1 ⊂ M $L_0, L_1 \子集 M$ ,我们提供了等变拉格朗日浮子同调 H F G ( L 0 , L 1 ) $HF_G(L_0, L_1)$ 的构造。我们通过使用涉及 E G $EG$ 近似的余切束的交映同调商来做到这一点。我们的构造依赖于韦尔海姆和伍德沃德的棉被理论以及望远镜构造。我们证明这些群与构造中的辅助选择无关,并且是 H ∗ ( B G ) $H^*(BG)$ 双模子。在 L 0 = L 1 $L_0 = L_1$ 的情况下,我们证明它们的链复数 C F G ( L 0 , L 1 ) $CF_G(L_0, L_1)$ 与 L 0 $L_0$ 的等变莫尔斯复数是同调等价的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信